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Preface

This thesis is submitted to the Department of Mathematics, University of Oslo in partial
fulfillment of the requirements for the degree of Ph.D. The work that lead to this thesis was
carried out under the supervision of professors Ragnar Winther and Kent-Andre Mardal.

The thesis is structured as an introduction followed by a collection of papers. A lot of
research starts out from relatively simple, tangible motivations, but as one’s work proceeds
one strays further into abstractions, simplifications, and/or generalizations. That is not to say
that the work doesn’t have value, of course, but that it can be easy to lose sight of the proverbial
forest for the trees. The papers that make up this thesis are no exceptions to this. Therefore,
the introduction chapter of this thesis will attempt to draw a line from basic motivations to the
problems that lead to the papers, as well as to provide a larger scientific context in which the
work sits. I have opted to put an emphasis on motivating the ideas, rather than mathematical
rigour. That being said, I hope I have managed to strike some sort of balance between the two.
With hopefully some of the readers safely guided through the motivation, we end the chapter
on brief summaries of each paper, and try to see how these trees look in the forest.
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Introduction

Broadly speaking, this thesis is about preconditioning. That is, the design and analysis of algo-
rithms for solving linear algebraic systems that result from discretizations of partial differential
equations (henceforth PDEs). More specifically, the thesis is about the design of precondition-
ers suitable for problems concerning multiple interacting physical phenomena.

To describe the role preconditioners play in research and industry, it seems appropriate to
start from the perspective of PDEs. The importance PDEs enjoy are oft-repeated and rarely
understated. PDEs are powerful in their variety. For instance, they play a vital role in our
understanding of such disparate phenomena as e.g. gravity, electromagnetics, fluid mechanics
and thermodynamics. Moreover, PDEs are flexible in that one PDE, or a system of PDEs, can
be used to described different things. As a particularly relevant example, Biot’s consolidation
model, first introduced in its general form in [17], attempts to model the fluid flow in a porous
media. As such, it has found applications in for example reservoir engineering ([68, 96]),
environmental engineering ([82]), and biomechanics ([75, 80]). In a sense, the study of PDEs
is a way to view the world. As a consequence the mathematical analysis of PDEs is a wide topic
of research, that brings to bear tools from branches of mathematics ranging from functional
analysis and measure theory to topology and homological algebra.

Unfortunately, even for PDEs’ power and flexibility as a lens through which to view the
world, they can be difficult to solve. A purely mathematical analysis of a given problem can
in general only get you so far. One might be able to determine the existence and uniqueness
of a solution, and hopefully even that the solution is stable with regards to small pertubations
of the data. However, finding a formula for the solution will be impossible in all but the
simplest PDEs, on the simplest geometries. So with the hope of finding an exact solution
abandoned, we turn to numerical mathematics and computers to find discrete approximations
of the continuous problem. There are numerous ways a PDE can be discretized, popular
choices being by finite difference methods, finite elements, spectral methods. Regardless of
choice of discretization, it is natural that the numerical method, and its analysis, should be
informed by the analysis and mathematical tools employed on the continuous problem. That
is, the discrete problem should preserve as much of the continuous PDE as possible. Such
structure preserving discretizations can be exemplified by finite element exterior calculus ([9,
11] are key references), which is a unification and generalization of much of the theory on
finite element methods for saddle point problems — a class of system of PDEs we will become
more acquainted with later on.

Another recurring theme with many discretization methods is that the continuous prob-
lem is replaced by a large number of simpler, algebraic equations. This invariably leads to the
desire to solve large, and often sparse, matrix equations on a computer, and the number of
unknowns will grow with the fidelity of the numerical approximation. At this point the issue
of scalability of how one solves these matrix equations appears. Let N denote the order of
the matrix equation Ax = b, arising from some discretization of a PDE, where in particular
A is a sparse matrix with Z non-zero entries. Then the cost of a solving the set of equations
using Gaussian elimination will be of the order O (ZN logN ), [54]. As such, the solving time
will become infeasible for the large values of N encountered in applications. Iterative solution
methods, on the other hand, can offer a computational complexity of O (N ) per iteration. Of
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particular relevance to this thesis is the family of Krylov subspace methods, which we will dis-
cuss in more depth later on in the introduction. Although these methods are order-optimal per
iteration, a caveat is the number of iterations needed to convergence within a given tolerance
for error. Specifically, the iteration count will typically increase as N increases. This is tied
to the spectral properties of A, and as a consequence the structure of discretization method as
well as the PDE being considered.

To get iterative methods that achieve a prescribed error tolerance within a number of itera-
tions independent of N , we introduce preconditioners. Here, we consider the modified system
BAx= Bb, where B is the preconditioner matrix. The goal is to design B so that BA has nice
spectral properties, while also keeping the application of B at most O (N ) in complexity. This
will then lead to order-optimal solution methods. With these design goals in mind, it comes as
little surprise that B should be related to A, and in turn be informed by the foregoing analysis
done for both the continuous PDE and its discretization. In some sense, the preconditioner
can be viewed as a culmination of the preceeding analysis. It attempts to make explicit in the
solution method more of the structure of the PDE than what more naive iterative methods
take into account. This rather vague argument will be further substantiated throughout the
introduction.

Mathematical background
In the following sections we will cover in more detail the mathematical theory most relevant
to the papers that make up this thesis. In particular, the discussions regarding abstract pre-
conditioning draw from [63]. Thus, we refer the reader there for further details and examples.
There, the design of efficient preconditioners relies on the specific properties of the underlying
PDE and the chosen discretization method. See also [32, 40, 61, 91] for further expositions
on this perspective.

Krylov Subspace Methods
A popular family of iterative methods for solving linear equations are the Krylov subspace
methods. In this section we shall give a brief introduction to the hallmark Krylov methods,
viz. the conjugate gradient method, [38], with emphasis on error estimation. We will also dis-
cuss how to generalize the conjugate gradient method to get other Krylov subspace methods.
More in-depth analyses of Krylov subspace methods can be found in e.g. [33, 55, 76].

Let X be a Hilbert space, possibly infinite-dimensional, with inner product and norm
denoted by (·, ·) and ‖·‖, respectively. We consider A : X → X a linear, symmetric and
positive definite operator. That is,A is linear and satisfies

(A x, y) = (A y, x) , and (A x, x)> 0 (1)

for every x, y ∈X . For a given f ∈X we aim to find an x ∈X so that

A x = f , (2)

using an iterative method. The iterates will be chosen from the Krylov subspaces

Vk =Vk(A , f ) = span( f ,A f , . . . ,A k−1 f )

We associate with (2) the energy functional

Φ(x) :=
1
2
(A x, x)− ( f , x) .
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We will now see that the solution x ∈ X to (2) minimizes Φ over X . Let y, z ∈ X , using the
definition of Φ we see that

Φ(y + z)−Φ(y) = (A y − f , z)+
1
2
(A z, z)≥ (A y − f , z) .

Thus, we see that x ∈X solves (2) if and only if

Φ(x)≤ Φ(y), ∀y ∈X . (3)

The conjugate gradient method is based on this minimizing property, where the iterates
xk are implicitly defined by

Φ(xk)≤ Φ(y), ∀y ∈Vk . (4)

Some of the power of the conjugate gradient lies in the fact that the iterates xk defined by (4)
can be computed relatively cheaply. In fact, to calculate xk , only the previous iterate xk−1 and
f are required, together with computing the action ofA on any elements of X . More details
on implementation can be found, for instance, in [33, Sec. 10.2.2].

To estimate the error x− xk , we begin by noting that similar to how we derived the mini-
mization property in (3), we can derive that the iterates xk satisfy

(A xk , y) = ( f , y) , ∀y ∈Vk . (5)

From (5) and (2), the error x − xk satisfies the orthogonality condition

(A (x − xk), y) = 0, ∀y ∈Vk .

From this, we can verify that xk is the element in Vk , which minimizes the error to x in the
A -norm. That is,

‖x − xk‖A = inf
y∈Vk

‖x − y‖A , (6)

where ‖·‖2
A = (A·, ·).

Next, we observe that since xk ∈Vk , it follows that xk = pk(A )x for some polynomial pk
of order k with pk(0) = 0. Thus, x− xk = qk(A )x, where qk is a polynomial of order k with
qk(0) = 1. It follows that

‖x − xk‖A ≤ sup
λ∈σ(A )

|qk(λ)| ‖x‖A , (7)

where σ(A ) ⊂ R denotes the spectrum of A . This observation, together with the energy
minimization property in (6), gives us a bound on the error as

‖x − xk‖A ≤ inf
p∈Pk
p(0)=1

sup
λ∈σ(A )

|p(λ)| ‖x‖A . (8)

The polynomial minimizing the right hand side of (8) can be expressed in terms of scaled
Chebyshev polynomials (see for instance [83, Thm. 38.5]), in which case one can derive the
bound

‖x − xk‖A ≤ 2

�p
K(A )− 1p
K(A )+ 1

�k

‖x‖A . (9)

Here, K(A ) := ‖A ‖L (X ,X ) ‖A −1‖L (X ,X ) denotes the condition number ofA , which in the
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case ofA being symmetric can be expressed as

K(A ) = supλ∈σ(A ) |λ|
infλ∈σ(A ) |λ|

.

We first observe that from the error estimate (9) that the conjugate gradient method is guar-
anteed to converge. Secondly, the convergence factor depends adversely on the condition
number of A , in the sense that higher condition numbers yield slower convergence of the
iterations.

If we assume thatA is only symmetric indefinite, i.e. we no longer assume the inequal-
ity in (1), the associated energy functional Φ will no longer have a unique minimizer, and we
cannot use conjugate gradient iterations to solve (2). Instead, we seek iterates xk ∈Vk charac-
terized by

xk := argmin
y∈Vk

‖A y − f ‖2 . (10)

This leads to the so-called minimal residual method, [67]. As with the conjugate gradient
method, the iterates xk can be efficiently computed recursively based only on evaluations of
A , and the iterates xk satisfy

‖A (x − xk)‖ ≤ inf
y∈Vk

‖A (x − y)‖ .

Moreover, we have analogously to the conjugate gradient method that

‖A (x − xk)‖ ≤ inf
p∈Pk
p(0)=1

sup
λ∈σ(A )

|p(λ)| ‖A x‖ .

Since the spectrum ofA is no longer contained in the positive half of the real line, we can-
not proceed as before by using Chebyshev polynomials. However, the convergence rate will
sill depend on the condition number of A . For instance, by restricting to only symmetric
polynomials in the above, we get the bound

‖A (x − xk)‖ ≤ 2
�

K(A )− 1
K(A )+ 1

�k

‖A x‖ ,

[56]. We observe that the convergence of the minimal residual iteration is slower than for
the conjugate gradient iteration, but the convergence behaves similarly in that an increase in
K(A ) results in slower convergence.

Remark 1. In addition to the above mentioned minimal residual method, the conjugate gradient
method has generated numerous generalizations and offspring. Most notably GMRES (Generalized
minimal residual), [77], and Bi-CGstab (stabilized Bi-conjugate gradient), [87], which are applica-
ble for nonsymmetric problems, but come at a higher memory- and computational cost. There have
also been developed Krylov subspace methods for eigenvalue problems, in particular the Arnoldi-,
[12], and Lanczos iterations, [51].

Preconditioning
In the previous section we saw that the convergence of most Krylov methods depends ad-
versely on the conditioning of the operatorA . In many applications the conjugate gradient
method, or another Krylov subspace method, is used to solve matrix equations that come
from discretizations of PDEs. It is common in such applications that the underlying contin-
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uous operator is unbounded from a Hilbert space into itself, making the resulting iterative
method slowly converging.

The variational formulation of a PDE will often be well-posed on an infinite-dimensional
Hilbert space X , densely and continuously embedded in some other Hilbert space Y . Specifi-
cally, let (·, ·) denote the inner product on Y , with corresponding norm ‖·‖, and let X ∗ denote
the dual space of X , with duality pairing as an extension of (·, ·). Then, if we identify Y with
its own dual, Y will be densely and continuously embedded in X ∗. The general problem we
consider is for a given f ∈X ∗, to find u ∈X so that

A u = f , (11)

where we assumeA : X →X ∗ to be a homeomorphism. That is,A is bounded and invertible
from X to X ∗ with bounded inverse. We see that a Krylov space method as described previ-
ously based on (11) will not be well-defined, since we cannot identify X with its dual space.
In a discrete setting, this will often lead to a deterioration of the convergence of the iterative
method as the problem size increase.

The remedy is to introduce an additional operator, called the preconditioner,B : X ∗ →
X , which we assume to be a symmetric positive-definite isomorphism. Then, the operator
BA : X → X is symmetric in the preconditioned inner product

�B−1·, ·�, and thus Krylov
space methods are applicable to the preconditioned system

BA u =B f .

The convergence will then depend on the condition number

K(BA ) = ‖BA‖L (X ,X )



(BA )−1

L (X ,X ) .

A natural choice isB : X ∗→X as the Riesz mapping defined by

(B f , v)X = ( f , v) , ∀v ∈X , f ∈X ∗.

We will henceforth refer to this choice ofB as the canonical preconditioner. Then it is straight-
forward to show that

K(BA )≤ ‖A‖L (X ,X ∗)


A −1

L (X ∗,X ) , (12)

which means that the convergence of a Krylov space method will be based solely on the map-
ping properties ofA .

Finite element methods, and many other numerical methods for the numerical solution
of PDEs, are based on choosing a family of finite-dimensional subspaces Xh ⊂ X , indexed by
h. Here, it is natural to assume that the spaces Xh provide better and better approximations
of the space X . Therefore, we will in the following assume that

lim
h→0

inf
v∈Xh

‖w − v‖= 0, ∀w ∈X . (13)

For a fixed h, let us solve the discrete problem

Ah uh = fh , (14)

where Ah : Xh → X ∗h and fh ∈ X ∗h is the restriction of A and f to Xh , respectively. Since
Xh is finite dimensional, the norms inherited from X and Y are equivalent on Xh , and we can
make the identification of Xh with its dual. This makes (14) amenable to the Krylov methods
discussed in the previous section.
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N 32 64 128 256 512 1024
k 31 63 126 251 506 996

Table 1: Number of conjugate gradient iterations before reaching an error tolerance of 10−6

for the Poisson equation on the unit interval divided into N subintervals.

However, the norm equivalence on Xh will deteriorate as h → 0, which will lead to a
blow-up of the operator norms

‖Ah‖L (Xh ,Xh )
,



A −1

h




L (Xh ,Xh )
. (15)

This in turn will lead to K(Ah) increasing as h→ 0, and the convergence of a Krylov method
will be slow.

Example 1 (Poisson equation). To illustrate the above issue, consider the Poisson equation
with homogeneous Dirichlet boundary conditions. We set Ω = (0,1) to be the unit interval
on R, with boundary ∂ Ω. Further, let X = H 1

0 (Ω), and Y = L2(Ω), and define the operator
A : X →X ∗ by

(A v, w) := (∇v,∇w) , ∀v, w ∈X .

We discretize X by partitioning Ω into N + 1 subintervals of equal length h = 1
N+1 . We

then define the discrete space Xh to be the subspace of X consisting of functions that are linear
polynomials on each subinterval. See then that dimXh =N . If we have a basis for Xh , which
we denote by

�
φi

h

	N
i=1

, we can assemble the matrix A ∈RN×N and vector f ∈RN defined by

Ai , j = (Aφ j
h ,φi

h), and fi =
�

f ,φi
h

�
.

Let uh ∈RN be the solution to the matrix equation

Auh = f. (16)

We now try to solve (16) on a computer using the conjugate gradient method for different
values of N , and random right hand side. We stop after k iterations if the relative residual
‖rk‖2
‖r0‖2

< 10−6. The results can be viewed in Table 1, where we see that indeed the number of
iterations increases along with increasing N .

To overcome this deterioration of convergence we do as in the continuous case, and intro-
duce a preconditionerBh : X ∗h →Xh by

(Bh f , v)X = ( f , v) ,∀v ∈Xh , f ∈X ∗h ,

and consider the preconditioned discrete problem

BhAh uh =Bh fh .

As already noted, the convergence of a Krylov method will then depend only on

‖Ah‖L (Xh ,X ∗
h
) ,



A −1

h




L (X ∗
h

,Xh )
,

which are assumed bounded independently of h.
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The canonical preconditionerBh as defined above, will generally be expensive to compute.
For instance, in Example 1 above,Bh =A −1

h , and ifA −1
h already was cheap to compute, then

we would already have an efficient solution algorithm available. To avoid this problem, we
can replaceBh by a second symmetric, positive definite operatorBh,2 : X ∗h → Xh , which we
assume is easier to compute than Bh , and is spectrally equivalent to Bh . That is, there are
constants C1,C2, which are independent of h so that

C1 (Bh f , f )≤ �Bh,2 f , f
�≤C2 (Bh f , f ) , ∀ f ∈X ∗h . (17)

ThenBh,2B−1
h is a linear isomorphism on Xh with K(Bh,2B−1

h )≤ C2
C1

. It then follows that if
we useBh,2 as preconditioner instead,

K(Bh,2Ah)≤
C2

C1

‖Ah‖L (Xh ,X ∗
h
)




A −1
h




L (X ∗
h

,Xh )
,

which is bounded independently of h.
From the above discussion, we observe that preconditioning can be seen as a way to in-

troduce the norms under whichAh is a homemorphism into the implementation. Preferably
with norms independent of the discretization parameter h. As such, the preconditioner should
be informed by the analysis of both the continuous operator and its discretization. Having the
norms, and thus the canonical projectionBh , is rarely enough, though, and a computation-
ally tractible preconditionerBh,2 must be constructed. This is by no means a simple matter in
general, and since the preconditioner should be informed by the underlying PDE, we cannot
hope for a universal preconditioner that works for every problem. However, we will later
discuss multigrid methods, which have turned out to inspire quite general frameworks for
constructing preconditioners for a wide variety of problems.

Saddle Point Problems
In the previous section we saw that a preconditioner for a given problem should be chosen
based on the mapping properties of the underlying operator defining the PDE. We will now
expand on this point, and see that the design of preconditioner for a system of PDEs can be
broken into a series of simpler subproblems. When preconditioners for each subproblem have
been established, a preconditioner for the original can easily be constructed. This approach has
been used in for instance [6, 78], but we emphasize its wider applicability here by considering
abstract saddle point systems. To that end, let V and Q be Hilbert spaces. We consider the
problem for given f ∈V ∗ and g ∈Q∗: Find (u, p) ∈V ×Q so that

a(u, v)+ b (v, p) = ( f , v) , ∀v ∈V
b (u, q) = (g , q) , ∀q ∈Q.

(18)

Here, a : V ×V → R and b : V ×Q → R are bounded, bilinear forms. We can state the
problem in our more abstract framework by introducing operators A : V →V ∗ and B : V →
Q∗ defined by

(Av, w) = a(v, w), and (Bv, q) = b (v, q),

for each v, w ∈V and q ∈Q. Introducing the product space W =V ×Q, for which we have
W ∗ =V ∗×Q∗, we can define L := f × g ∈W ∗ by

(L, (v, q)) = ( f , v)+ (g , q) ,
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andA : W →W ∗ by

A =
�

A B∗

B 0

�
,

where B∗ : Q→V ∗ is the adjoint of B . With x = (u, p) ∈W , the saddle point system (18) can
then be reformulated as

A x = L. (19)

The Brezzi conditions are sufficient conditions for the well-posedness of (18). Equivalently,
they are sufficient for A to be an isomorphism. The conditions are as follows: There are
constants α,β> 0 so that

a(v, v)≥ α‖v‖2
V , ∀v ∈ kerB , (20)

and

inf
q∈Q

sup
v∈V

b (v, q)
‖v‖V ‖q‖Q

≥β. (21)

We note that as a consequence of Banach’s closed range theorem, the condition (21) is equiva-
lent to the operator B : V →Q∗ being surjective.

The canonical choice for preconditioner forA is then the Riesz mappingB : W ∗→W ,
which takes the form

B =
�BV 0

0 BQ

�
,

where BV : V ∗ → V and BQ : Q∗ → Q are the canonical Riesz mappings for V and Q,
respectively. Thus, when designing preconditioners for problems of the form (18), we should
determine spaces V and Q so that the Brezzi conditions are satisfied. We can then consider V
and Q separately when constructing a preconditioner.

We note that the block-diagonal preconditioner B is not the only choice of structure
for an abstract preconditioner of saddle point systems. For instance, if the problem is non-
symmetric, or preserving symmetry is not of great importance, block-triangular precondi-
tioners can be considered. These types of preconditioners were considered in e.g. [59, 99].
The point still remains, however, that the preconditioner should reflect norms under which
the saddle point problem is well-posed.

Parameter-robust preconditioning
Many PDEs used to model the physical world depend on a variety of physical parameters
whose values can range from the very small to the very large. When designing algorithms for
solving linear systems arising from discretizations of such PDEs, we want the convergence
to be indendepent of whatever value these parameters have, in addition to the fidelity of the
discretization. Recall that the canonical preconditioner is given by the Riesz mapping on a
Hilbert space to its dual for a Hilbert space in which the PDE is well-posed. For parameter-
dependent PDEs this translates to identifying parameter-dependent norms so that the underly-
ing operator defining the PDE is bounded uniformly in these norms, [100].

To be more specific, let ε ∈Rm be a set of m parameter values. Further, letAε : X → X ∗

be a linear homeomorphism, characterized by the parameters ε. Generally, we cannot expect
the operator norms

‖Aε‖L (X ,X ∗) , and


A −1

ε



L (X ∗,X )
to be bounded independent of ε. In view of (12), we cannot expect the condition number of
BAε, whereB : X ∗→ X is the canonical preconditioner, to be bounded independently of
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ε. The goal is then to define an ε-dependent norm, ‖·‖ε, on X so that if we define Xε :=X as
a set, but with norm given by ‖·‖ε, then the norms

‖Aε‖L (Xε,X ∗ε ) , and


A −1

ε



L (X ∗ε ,Xε)

are bounded indepedently of ε. It follows then that the canonical preconditionerBε : X ∗ε →
Xε yields condition numbers forBεAε that are bounded independently of ε.

Example 2 (Biot’s consolidation model). As an example of a parameter-dependent PDE we
consider Biot’s consolidation model, which we recall is popular in modelling fluid flow through
elastic, porous media.

Let Ω be a bounded, n-dimensional domain. In a homogeneous, isotropic, linear elastic
porous media, the quasi-static Biot’s model is

−div(2µε (u)+λ(divu)I)+α∇pF = f,
s0 ṗF +αdiv u̇− div(c∇pF ) = g

(22)

inΩ. Here the unknowns are the displacement of the elastic medium, u, and the fluid pressure,
pF . In particular, u is a vector field, and pF is a scalar-valued function, both defined on Ω. In
addition, ε= 1

2 (∇+∇>) denotes the symmetric gradient. The right hand sides f and g are the
given momentum- and mass sources, respectively. The system (22) should of course be paired
with a suitable set of boundary conditions. As for the physical parameters, µ and λ are the
Lamé parameters, which characterize the solid. The Biot-Willis constant, α, couples the two
PDEs, while s0 is the constrained specific storage coefficient and is defined as fluid content per
change in pressure constrained by a fixed strain (cf. [90]). Lastly, c is the symmetric perme-
ability tensor, which roughly speaking measures the ease at which the fluid flows through the
porous medium. The values of all the parameters mentioned above are assumed to be positive,
and α < 1. In the case of cwe assume that it is unformly symmetric positive definite, i.e. there
are constants 0<K0 ≤K1 so that for every x ∈Ω and ξ ∈Rn

K0|ξ |2 ≤ ξ >c(x)ξ ≤K1|ξ |2.
We will now consider a variational formulation of (22) with homogeneous Dirichlet bound-

ary conditions, i.e. we impose u= 0 and pF = 0 on the boundary ofΩ. Further, we will disre-
gard the time derivatives in the second equation of (22). This is justified from the fact that any
implicit time discretization of (22) will lead to the need to solve systems like (22) without time
derivatives. For sake of further simplicity, we further assume µ = 1, which can be achieved
through a parameter rescaling, and that s0 =

α2

λ . The variational problem we now consider is
then to seek u ∈H 1

0 =H 1
0(Ω) and pF ∈H 1

0 =H 1
0 (Ω) so that

(ε (u) ,ε (v))+λ (divu, divv)−α (pF , divv) = (f,v) , ∀v ∈H 1
0

−α (divu, qF )−
α2

λ
(pF , qF )− (c∇pF ,∇qF ) = (g , qF ) , ∀qF ∈H 1

0 .
(23)

In coefficient matrix form, we can write (23) as

A
�

u
pF

�
:=
�−divε−λ∇div α∇

−αdiv −α2

λ + divc∇
��

u
pF

�
=
�

f
g

�
, (24)

where we clearly see that A depends on λ, α, and c. As such, the operator norm of A :
H 1

0 ×H 1
0 → H−1 ×H−1 and its inverse will not be independent of these parameters. So we
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introduce the parameter-dependent norms

‖v‖2
V := ‖ε (v)‖2+λ‖divv‖2 , v ∈H 1

0

‖qF ‖2
Q :=

α2

λ
‖qF ‖2+(c∇qF ,∇qF ) , qF ∈H 1

0 ,

and set V = H 1
0 and Q = H 1

0 as sets imbued with the above norms, respectively. Then it
can be shown that A : V ×Q → V ∗ ×Q∗ is a homeomorphism with itself and its inverse
bounded independently of the parameters. With these norms the, canonical preconditioner
B : V ∗×Q∗→V ×Q forA then reads

B =
�
(−divε−λ∇div)−1 0

0
�
α2

λ − divc∇
�−1

�
. (25)

In preconditioning discretizations of (23), the non-zero blocks in (25) must be replaced
by spectrally equivalent and computationally cheap operators. The second block of (25) can
be replaced by suitable multigrid operators, which we will discuss in the next section. The
first block is more troublesome, where common preconditioning strategies fail in the incom-
pressible limit λ →∞ ([72]). See also [42], where a nonnested multigrid preconditioner is
proposed for a discontinuous Galerkin discretization of an operator closely related to the V -
norm.

In addition to the complicated first block of B , many discretizations of Biot’s consol-
idation model based on (23) will be numerically unstable, [34]. As such, there have been
developed several different discretizations of (22). Most pertinent to our discussion so far are
different mixed methods studied in e.g. [64, 69, 70, 95]. We remark that also primal formula-
tions, e.g. [98], and least squares methods, [45], have also been studied, but we make no claim
that this list is exhaustive. With a plethora of discretization methods comes also the need to
develop several different preconditioners, each suitable for a particular discretization. In par-
ticular, block preconditioners for different discretizations of poroelasticity have been studied
in e.g. [71, 73], and with an emphasis on parameter-robustness in [3, 29, 35, 43, 53, 74].

Multigrid methods
Up to this point, we have treated preconditioning in more abstract terms. That is, having es-
tablished well-posedness of a PDE under certain norms yields a canonical preconditioner a for-
tiori. Similarly, canonical preconditioners for discretizations of PDEs are also borne out from
considering the mapping properties of the discrete operator. As already remarked however,
these canonical preconditioners are rarely computationally tractible, and in computer code
should then be replaced by operators that are cheap to compute and spectrally equivalent to
the canonical preconditioner according to (17). Optimally, the implemented preconditioner
should also be computed in O (N ) time, where N is the number of unknowns to be solved for.
We are then left with the task of constructing such operators.

Multigrid methods is a framework that has proven effective in constructing precondition-
ers adressing the above design goals for a wide class of problems. As such, there is a large body
of theory concerning these methods. Cf. [24, 84] and references therein. Moreover, multigrid
methods have spawned a number of generalizations, and they can be seen as a special case of
an even more general framework for constructing preconditioners, [93]. Therefore, we will
in this section discuss a simple multigrid method, primarily from a motivational perspective,
while also devoting time to point to some important generalizations.

To motivate multigrid methods, we revisit Example 1. Recall that Xh ⊂H 1
0 (Ω) is the space

10



of continuous, piecewise linear functions relative to a uniform partition of the unit interval
Ω = (0,1). Then we define the discrete Laplacian Ah : Xh → Xh as the restriction of the
LaplacianA to Xh .

For a given f ∈Xh we seek u ∈Xh so that

Ah u = f . (26)

We begin by considering one of the simplest iterative methods for solving (26), viz. the
Richardson’s iteration1. Let u0 ∈ Xh be an initial guess, and τ ∈ R a constant parameter.
Then a subsequent iterate uk+1 ∈Xh is obtained from the previous iterate uk by

uk+1 = uk +τ( f −Ah uk). (27)

It is easy to see from (27) that the error ek := u − uk satisfies

ek = (I −τAh)ek−1 = (I −τAh)
k−1e0.

For the iteration (27) to converge (inAh -norm), we must require that ‖I −τAh‖Ah
< 1. If

λmin and λmax are the smallest and greatest eigenvalues of Ah , respectively, then this means
that the Richardson’s iteration converges only if

0< τ <
2
λmax

,

and the optimal choice is given by τ = 2
λmin+λmax

. However, even with a choice of τ so that the
Richardson’s iteration converges, the convergence might be slow.

To see this, let now 0 < λmin = λ1 < λ2 < · · · < λN = λmax < ∞ be the eigenvalues
of Ah , and v1, . . . , vN the corresponding set of orthonormal eigenfunctions. Suppose now
that we make the particular choice of τ = 1

λN
, which ensures that the Richardson’s iteration

converges. We decompose the initial error as

e0 =
N∑

i=1

ci vi ,

and its norm can be written as ‖e0‖2
Ah
=
∑N

i=1λi c
2
i . The decomposition of the k’th error is

then

ek =
N∑

i=1

ci

�
1− λi

λN

�k

vi . (28)

At this point, it is worthwhile to make a few observations. First, we see from (28) that
the Richardson’s iteration quickly reduces the components of the error that correspond to the
large eigenvalues. On the other hand, if λi << λN , the corresponding error component is
left virtually untouched, and so we should expect that convergence is slow on these compo-
nents. The second observations we make is that for elliptic operators — as is the case forA —
and discretization of such operators, large eigenvalues have highly oscillatory eigenfunctions,
whereas smaller eigenvalues have smoother eigenfunctions.

From these two observations we can expect that the error after k iterations of (27) is rel-
atively smooth compared to the initial error. Figure 1 validates these observations. Here, we
have set f = 0, and we see that while the error e5 is slightly smaller in magnitude to the random

1A preconditioner can be derived from any linear iterative method in a straightforward manner. See [24,
Prop. 1.1].
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Figure 1: The solid line shows the initial error, e0, while the dashed line shows the error, e5,
after 5 applications of (27) with τ = 1

λmax
.

initial error, the most striking feature is that the error is much smoother.
At this point we can formulate one of the key ideas in multigrid. The smooth errors we

get from a few Richardson’s iterations, or any other simple smoothing procedure, can be well-
represented on a coarser grids. On this coarser grid, a coarse solution is cheaper to compute,
but roughly speaking what were low frequency components on the fine mesh are relatively
high frequency on the coarser mesh, making them susceptible to a simple iterative method.

So suppose XH is the space of continuous, piecewise linear functions relative to coarser
partition of the unit interval. For instance, if N + 1= 1

h is even, we can take H = 2h. Then,
XH ⊂ Xh , and we denote by IH : XH → Xh the inclusion operator, while QH = I ∗H : Xh → XH
denotes the L2 projection onto XH . We define the action of our multigrid operatorBh : Xh →
Xh for a given f ∈Xh as

u0 = 0

u1 = u1+Rh( f −Ah u0)
u2 = u1+ IHBH QH ( f −Ah u1)
u3 = u2+Rh( f −Ah u2),

Bh f := u3.

(29)

Here,Rh : Xh →Xh represents the application of a number of Richardson’s iterations, or an-
other smoothing procedure. The relatively smooth residual, f −Ah u1, is then projected onto
the coarser space XH , where BH can represent either an exact inversion ofAH , or another
level in a multigrid procedure. The last smoothing step can be seen to makeBh a symmetric
operator.

An iterative method for solving (26) based onBh will now take an initial guess u0 ∈ Xh ,
and subsequent iterates uk+1 are then obtained from the previous iterative uk by

uk+1 = uk +Bh ( f −Ah uk) . (30)

Similar to Richardson’s iteration, (30) converges if and only if ‖I −BhAh‖Ah
< 1. Perhaps

unsurprisingly, the convergence of the iterative method (30) requires some interplay between
the chosen smoothing procedure and the coarse space. More specifically, the coarse grid correc-
tion should handle the components of the error not covered by the smoother. This heuristic
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N 32 64 128 256 512 1024
k 31 62 126 248 502 1005
kM G 4 4 3 3 2 2

Table 2: Number of preconditioned conjugate gradient iterations before reaching an error
tolerance of 10−6 for the Poisson equation on the unit interval divided into N subintervals.
k is number of iterations until reaching error tolerance with no preconditioner. kM G is the
corresponding iteration count when using a multigrid preconditioner with 4 grid levels and a
Jacobi smoother on each level.

can be substantiated further into a number of conditions onRh and XH that must be verified.
We settle here with referring to [24, Chapter 2] for further details.

Suppose that (30) provides a convergent iteration inAh , so there is some 0 ≤ δ < 1 such
that

0≤ ‖I −BhAh‖Ah
≤ δ.

It then follows by the definition of theAh -norm that for every u ∈Xh

(1−δ) (Ah u, u)≤ (BhAh u,Ah u)≤ (Ah u, u) . (31)

Replacing u byA −1
h u, we recover the spectral equivalence (17). Thus, ifBh provides a conver-

gent linear iterative method, it is also suitable as preconditioner. Moreover, if the convergence
factorδ is independent of h, then the condition number ofBhAh will be uniformly bounded
in h.

To numerically validate this discussion, we revisit the tests we made in Example 1. We now
useBh , defined by (29) as a preconditioner. For the smootherRh , we have used a scaling of
the inverse of the diagonal entries of the matrix realization ofAh , i.e. a Jacobi smoother. The
smoother is applied on 3 succesively coarser grids, while on the coarsest grid we do an exact in-
version. The results are shown in Table 2, where the iteration counts for the unpreconditioned
conjugate gradient method are also displayed for comparison. Here we see that the iteration
count for the preconditioned conjugate gradient method stays bounded independently of the
problem size, in accordance with our discussion.

Remark 2. In this section we have only considered a simple multigrid algorithm on a simple
problem. But multigrid methods have been effectively applied to quite general elliptic problems, cf.
[19, 62] and references therein. For H (div)-, or H (curl) problems multigrid methods have been
constructed, and proved efficient, in i.a. [7, 8, 39, 41].

One major drawback of the multigrid framework as discussed in this section, is the assumption
that we have a nested sequence of grids on which the coarser discrete spaces can be defined. In our
above example, we used uniform partitions of the unit interval, and getting coarser partitions was
relatively straightforward. However, in many applications such a sequence of grids is not readily
available. To adress this issue, so-called algebraic multigrids (AMG) methods were developed, where
the stiffness matrix, and its sparsity pattern, is used to construct coarse spaces. See [81, 89, 94] for
general theory on AMG and an overview of its various flavours.

Further, abstract multigrid theory has also seen several generalizations. Of particular relevance
to this thesis are the parallell multigrid method, [22], and multigrid methods for non-nested bilin-
ear forms, [23]. In the former, the input f is projected onto each grid level, instead of the residual
f −Ah u1 as was done in (29). This has the benefit that computing the action ofAh is not required,
but generally leads to a worse spectral equivalence than standard multigrid operators. See also [97].
For the latter, the implicit assumption made in (29) thatAH is the restriction ofAh is lifted, and
can be more general. This framework has proven useful in e.g. constructing preconditioners for
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discontinuous Galerkin discretizations, [31, 44]. Later, we will see the framework of [23] put to
use when considering the fractional Laplacian in [14].

Fractional Sobolev spaces
So far, we have seen that when constructing preconditioners for saddle point systems, the
task can be broken up into constructing preconditioners for PDEs with only one unknown.
Moreover, we have also seen that multigrid operators can provide efficient preconditioners
for a multitude of problems, in particular problems posed in H 1, H (div), or H (curl). The
fractional Sobolev spaces, denoted H s where s is a real parameter, have also received some
attention from a preconditioning perspective, and are the main topic in two of the papers
that make up this thesis. This, paired with the fact that H s enter naturally into a variational
formulation of a class of saddle point systems that we will discuss in the next section, justifies
a brief discussion of fractional Sobolev spaces here.

Again, we let Ω ⊂ Rn be a bounded domain. For s ∈ [0,1], the space H s = H s (Ω) is an
intermediate Hilbert space, containing H 1 and contained in L2. There are a couple of ways to
interpolate between Hilbert spaces2, notably the real- and complex method, [1, Ch. 7]. See
also [50] for an overview of the various definitions of fractional Laplacian operators, which
naturally relates to fractional Sobolev spaces. However, the method of interpolation most
pertinent to this thesis is the method based on spectral decomposition, as presented in [57].
To that end, let the inner product on H 1 be realized by the operatorA := I −∆, as

(u, v)1 = (A u, v) = (u, v)+ (∇u,∇v) , u, v ∈H 1.

ThenA is unbounded as an operator mapping L2 to L2. However,A is well-defined on the
set

D(A ) = �u ∈ L2(Ω) : A u ∈ L2(Ω)
	

,

which is a dense subspace of L2. On D(A ),A is symmetric positive-definite. From spectral
theory (cf. e.g. [47, Ch. 7 and 9]) the fractional powers ofA ,A θ for θ ∈R, are well-defined.
Note that in the particular case θ= 1

2 ,




A 1
2 u



2
= (A u, u) = ‖u‖1 .

For s ∈ [0,1], we define the fractional Sobolev spaces as

H s =
¦

u ∈ L2 : A s
2 u ∈ L2

©
, (32)

which is a Hilbert space with inner product given by

(u, v)s = (A s u, v) , u, v ∈H s ,

and we denote the corresponding norm by ‖·‖s .
We define H s

0 to be the closure of C∞0 (Ω), the space of infinitely smooth functions with
compact support in Ω, in the norm of H s . We note that if s ≤ 1

2 , the spaces H s
0 (Ω) and H s (Ω)

coincide (cf. [57, Theorem 11.1]). For s ∈ [−1,0], we define a family of fractional Sobolev
spaces using the dual of H s

0 . That is,

H s =
�
H−s

0

�∗ .
2These definitions are often equivalent in that they yield the same spaces as sets with equivalent norms.
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Alternatively, replacing H 1 with H 1
0 and settingA =−∆ in the above construction, will

again yield the space H s
0 , with equivalent norm, for all s except when s = 1

2 . In this case,

interpolation between H 1
0 and L2 results in a space that is strictly contained in H

1
2

0 .
One way to discretizeA s follows similar lines to the definition of the fractional Sobolev

spaces. To see this, let Xh ⊂H 1
0 be a finite-dimensional subspace with dimXh =N . We define

the operatorAh : Xh →Xh as the restriction ofA to Xh . That is,

(Ah u, v) = (A u, v) = (∇u,∇v) , u, v ∈Xh . (33)

Using the fractional powers ofAh , we define for s ∈ R the discrete fractional inner product
on Xh by

(u, v)s ,h =
�A s

h u, v
�
, u, v ∈Xh ,

and denoted the corresponding norm by ‖·‖s ,h .
A point worth making is that Xh ⊂ H s

0 and Xh ⊂ H s for s ∈ [0,1], and so ‖v‖s is well-
defined for every u ∈ Xh . In fact, ‖·‖s and ‖·‖s ,h are equivalent, [5]. Therefore, discrete op-
erators B s

h that are spectrally equivalent to A −s
h can be used as preconditioners for PDEs

well-posed in H s .
However, in computer code, the construction ofA s

h in the way described above requires
solving a potentially large eigenvalue problem, which is computationally expensive. More-
over, in the next section we will consider an application of H s that does not involve evaluating
the fractional Laplacian. As a consequence, we want to avoid any computation of the action
ofA s

h when designing a preconditioner for H s .

Remark 3. Due to the numerous definitions of the fractional Laplace operators, there are like-
wise numerous discretizations and solution strategies for problems involving (−∆)s . We refer to
[58], and the references therein, for a discussion of various discretizations. As for general solution
strategies of problems involving (−∆)s , see e.g. [18, 37, 86].

There have also been developed several preconditioners for the fractional Laplacian, both with
positive- and negative fractionality. Multilevel preconditioners for an integral representation of
the fractional Laplacian when s = − 1

2 were studied in [20, 30]. For more general values of s , a
hierarchical basis preconditioner was analyzed in [66] and further developed [21]. More recently,
an auxiliary space preconditioner for when s < 0 was constructed in [79], but there the authors
needed to assume a discretization of the fractional Laplacian of positive fractionality was available.

Multiphysics problems
Fractional Sobolev spaces, and the need for efficient preconditioners for them, appear natu-
rally in many multiphysics problems. For example, when two different physical phenomena
are modelled on separate domains, but coupled through an interaction on a common inter-
face of lower geometrical dimensionality. One could also consider systems of PDEs where
interacting physics are modelled on domains of different dimension. See for example [49].

Depending on the problem, and interface conditions one imposes, H s with s being either
positive or negative may appear. Thus, it is well-worth studying preconditioners for H s with
s both positive and negative.

To make the discussion more clear, we begin by considering the following example.

Example 3 (A simple trace constraint problem). Let Ω= (0,1)2 be the unit square in R2 and

Ω1 = Ω \ Ω̄2, where Ω2 =
�

1
4 , 3

4

�2
. Then, Ω1 and Ω2 form a partition of Ω, and we denote by Γ

the interface between them. Further we define ni , for i = 1,2 to be the unit normal vector on

15



Ω2Ω1

Γ

∂ Ω

Figure 2: Geometry considered in Example 3.

Γ in the direction outward from Ωi , which means that n2 = −n1. See Figure 2. We consider
the partitioned Poisson problem of finding functions u1 and u2 so that

−∆u1 = f1 in Ω1,
−∆u2 = f2 in Ω2,

u1 = 0 on ∂ Ω,
∇u1 · n1+∇u2 · n2 = 0 on Γ ,

u1 = u2, on Γ ,

(34)

where the right hand sides f1 and f2 are assumed given. The condition for u1 on ∂ Ω is simply
homogeneous Dirichlet conditions, and is present to yield a well-posed problem. The interface
conditions posed on Γ in (34) can be viewed as imposing continuity. A variational formulation
of (34) states that the solution (u1, u2)minimizes the energy functional given by

F (u1, u2) =
1
2
‖∇u1‖Ω1

+
1
2
‖∇u2‖Ω2

− ( f1, u1)Ω1
− ( f2, u2)Ω2

,

under the constraint that T1u1 − T2u2 = 0, where Ti , for i = 1,2, are the trace operators
onto Γ from Ωi . Further, the subscript Ωi denotes restriction of the L2-norm and -inner
product to Ωi . The minimum is sought for (u1, u2) ∈ H 1

∂ Ω
(Ω1)×H 1(Ω2), where H 1

∂ Ω
(Ω1) =�

v ∈H 1(Ω1) : v
��
∂ Ω
= 0

	
.

We now aim to enforce the trace constraint weakly through the use of a Lagrange mul-
tiplier. To that end, we note that Ti extends to a continuous, surjective operator H 1(Ωi )→
H

1
2 (Γ ), cf. [57, Thm. 8.3]. This means that (T1u1−T2u2,µ)Γ = 0 for every µ ∈ H− 1

2 (Γ ).
Thus, by introducing a Lagrange multiplier λ ∈ H− 1

2 (Γ ), we seek a critical point (u1, u2,λ) ∈
W :=H 1

∂ Ω
(Ω1)×H 1(Ω2)×H− 1

2 (Γ ) to the auxiliary energy functional

F̃ (u1, u2,λ) = F (u1, u2)+ (T1u1−T2u2,λ)Γ .

Differentiating F̃ with respect to each of its arguments, we find that (u1, u2,λ) satisfies

A



u1
u2
λ


=



−∆Ω1

0 T ∗1
0 −∆Ω2

−T ∗2
T1 −T2 0






u1
u2
λ


=




f1
f2
0


 . (35)

We see that (35) exhibits a saddle point structure like (19). Hence, in proving thatA : W →
W ∗ is a homeomorphism it is sufficient to verify the Brezzi conditions (20) and (21). In par-
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ticular, the coercivity of −∆Ωi
over the kernel of Ti follows from the Poincaré inequality

‖v‖2
Ωi
≤Ci ‖∇v‖2

Ωi
=Ci

�
(−∆Ωi

)v, v
�
Ωi

whenever v ∈H 1(Ωi ) satisfies Ti v = 0. The inf-sup condition (21) follows from the surjectiv-
ity of the trace operators Ti .

The canonical preconditionerB : W ∗→W is then given by

B =


(I −∆Ω1

)−1 0 0
0 (I −∆Ω2

)−1 0
0 0 (I −∆Γ )

1
2


 .

Discrete operators to replace the first two blocks ofB are well-studied, while preconditioners
for the third block were discussed in the previous section. However, note that neither (I −
∆Γ )

1
2 , nor its inverse, appear in the definition ofA . We recall that a construction of fractional

powers of operators required the solving of an computationally expensive eigenvalue problem.
As such, one would in general like the preconditioner replacing the third block ofB to not
involve any evaluation of (I −∆Γ )±

1
2 .

We end the example on the following remark. If in (34), we introduce the auxiliary vari-
ables σi =−∇ui , for i = 1,2. Instead of the continuity of potential condition on the interface
in (34), we impose that σ1 · n1+ σ2 · n2 = 0 using a Lagrange multiplier. Then, the Lagrange
multiplier λ ∈ H

1
2 (Γ ), and the canonical preconditioner for the resulting saddle point system

will contain a block of the form (I −∆Γ )−
1
2 . Cf. for instance [85]. That is, even for relatively

simple trace constraint problems there is a need for preconditioners for H s both with positive-
and negative values of s .

We remark that in the above, we considered solving (34) monolithically, i.e. we solve for
both subproblems on Ω1 and Ω2 simultaneously. This is not the only available solution strat-
egy. In particular, sequential solvers would solve first for one subproblem, followed by the
solution of the other, using the first solution as boundary data. This process can then be re-
peated until the solution has converged within a certain error tolerance. Solvers of this type
are considered for the Darcy-Stokes problem in i.a. [25, 28, 88]. This approach circumvents
the need for fractional Sobolev spaces. However, following [92], successive solvers can be
re-interpreted as block-preconditioned Richardson’s iteration, which suggests that monolithic
solvers are more efficient.

Example 3, though simple, hopefully motivates the appearence of fractional Sobolev spaces
in more complicated systems of PDEs. For instance, the above example can be generalized to
non-overlapping domain decomposition methods, [46, 60], or imposing Dirichlet boundary
conditions weakly, [13]. Similar approaches can be found in multiphysics problem, e.g. the
coupled Darcy-Stokes system in [52], or Stokes flow coupled with Biot’s consolidation model
in [4].

We can also generalize Example 3 to consider an additional PDE with domain on Γ , as
opposed to only continuity conditions. Moreover, Γ can have codimension two. In the above
problem, this translates to Γ being a point, while in 3D, Γ would be a curve embedded in
Ω. Such problems were considered in [48, 49], and are particularly relevant in biomedical
applications (cf. e.g. [16, 26, 27]).
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Paper I
In this paper we consider the construction of robust preconditioners for finite element ap-
proximations of Biot’s consolidation model (see (22)). In particular we introduce the stress
tensor σ := 2µε (u) + λ trε (u)I−α pF I, which we note is a symmetric tensor field. We note
that introducing the stress as a primary variable has potential benefits in problems where the
Biot model is coupled with other physics and there are trace conditions for the stress on the
interface. A problem of this type was, for instance, considered in [4]. The discretization of
symmetric tensor fields using finite element spaces has historically been a difficult problem,
and the first stable element in three dimensions was proposed in [2]. This element uses quartic
shape functions and has 162 local degrees of freedom. To avoid this problem, we follow the
method in [10], and impose the symmetry of σ weakly by introducing a Lagrange multiplier,
γ .

In coefficient matrix form, the full system then reads

A



σ
pF
u
γ


=




A K∗ −∇ skw∗

K B − div(c∇) 0 0
div 0 0 0
skw 0 0 0






σ
pF
u
γ


=




0
g
−f
0


 . (36)

Here, A is the compliance tensor, K is defined by Kτ = α
2µ+nλ trτ for a tensor field τ, while

B = α2

λ

�
1+ nλ

2µ+nλ

�
, and skw is the skew-operator on tensor fields.

We establish suitable norms in which A , defined by (36), is a homeomorphism. The
norms depend on the boundary conditions considered, but lead to bounds onA and its in-
verse that are independent of all physical parameters, in particular in the incompressible limit
when λ is large. We then propose a finite element discretization of (36) based on stable dis-
cretizations of the elasticity- and reaction-diffusion subproblems. With an argument similar
to the continuous case, we prove that this discretization is stable in all physical parameters as
well as the discretization parameter.

Motivated by the preceeding analyses, we then propose block-diagonal preconditioners
to efficiently solve (36) numerically. An advantage of this work is that each block can be
replaced by already well-studied preconditioners. Specifically, one can use properly scaled
H (div) preconditioners for σ , H 1 preconditioners for pF , and L2 preconditioners for u and
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γ . One caveat is the fully clamped case when u = 0 is imposed on the entire boundary of
Ω. In this case, we show that an efficient preconditioner for σ can be constructed from a
scaled H (div) preconditioner together with correction term on the one-dimensional subspace
spanned by the constant I-tensor fields.

The paper is concluded by a series of numerical experiments validating the theoretical
findings.

Paper II
In this paper we consider the construction of preconditioners for the problem

(−∆)s u = f ,

with s ∈ [−1,1]. We observe that when s ≥ 0, (−∆)s behaves spectrally similar to (−∆) in
that high frequency eigenmodes correspond to high eigenvalues, which motivates the use of
multigrid techniques to construct our preconditioner.

Our main motivational application are trace constraint- and multiphysics problems as dis-
cussed earlier in the introduction. As such, we assume that no discretization of (−∆)s is readily
available. We therefore develop an additive multigrid operator, [22], for the case s ≥ 0. An-
other issue is the non-nestedness of the bilinear forms on each grid level, and so we resort to
the framework laid out in [23], in which one key assumption that needs verification is

�
As

h v, v
�≤ (As

H v, v) , ∀v ∈VH .

Here, As
h and As

H are spectral discretizations of (−∆)s over finite-dimensional subspaces VH ⊂
Vh ⊂ H 1

0 . In our context, the discrete spaces are the standard continuous, piecewise linear
finite element spaces, and the above inequality is proved using Jensen’s operator inequality,
[36].

Further, we propose additive Schwarz operators based on overlapping domain decompo-
sition as smoothers. The additive multigrid preconditioner, B s

h , is then shown to be spectrally
equivalent to A−s

h using standard techniques for s = 0 and s = 1, from which the intermediate
cases follows, again by use of Jensen’s inequality. The proven spectral equivalence depends
on the number of grid levels used, but otherwise indepedent of the discretization parameter.
A great advantage of the proposed preconditioners is that they can be implemented by only
minor changes to standard multigrid implementation, and the smoothers are natural interpo-
lations of Jacobi smoother for s = 0 and s = 1.

For the case s < 0, the spectral similarity between (−∆)s and (−∆) breaks down. In this
case the highly oscillatory eigenmodes of (−∆)s correspond to relatively low eigenvalues, and
vice versa. As such, hoping that the same additive multigrid framework we used for s > 0 will
work here seems naive at best. Instead, we propose a preconditioner based on the multiplica-
tive decomposition

A−s
h =A−

1+s
2

h AhA−
1+s

2
h .

The left- and right factors of the above factorization are then replaced by B
1+s

2
h , where we

see that 1+s
2 ≥ 0. The appropriate spectral equivalence is then shown under an additional

regularity assumption on B
1+s

2
h . The resulting condition number will then behave like the

square of the condition number for B
1+s

2
h A

1+s
2

h .
The paper is concluded by a series of numerical experiments. In the first set of experiments

we validate the theoretical results established for when s ≥ 0 and provide some backing for the
more heuristical arguments made for s < 0. Lastly, we provide numerical tests showing that
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the proposed preconditioners are efficient as part of solution algorithms for a trace constrained
problem.

Future work

In paper II we only consider geometrical multigrid. That is, we assume a hierarchy of nested
meshes are given. However, the analysis suggests that whenever the subspace hierarchy used
is effective for both s = 0 and s = 1, the same should hold true for s ∈ (0,1). As such, it
would be interesting to consider subspaces used in popular algebraic multigrid procedures to
precondition the fractional Laplacian.

By a similar reasoning, we expect the additive multigrid framework to be effective when
considering discontinuous finite element spaces. That is, multigrid preconditioners have been
developed for discontinuous finite element discretizations of the Laplace operator, as well as
the identity operator. Thus, it is reasonable to consider similar subspace decompositions when
constructing preconditioners for nonconforming discretizations of (−∆)s , s ∈ (0,1).

Paper III
One of the main disadvantages of the work in Paper II was the unsatisfactory theoretical
grounding of proposed preconditioners for when s < 0. Moreover, the condition numbers,
although bounded in h, could become quite large. In Paper III we propose a novel family of
auxiliary space preconditioners to precondition (−∆)s when s ∈ [−1,0].

The construction is based on the observation that the canonical preconditioner, (−∆)−s , is
the positive fractional power of a differential operator. Suppose then that our preconditioner
consists of applications of ordinary differential operators. Then a correction is needed to
compensate for the "overshoot" in fractionality, and this correction should then behave like
a preconditioner for a fractional operator of positive fractionality. In particular, in this work
we consider the gradient operator,∇, which leads to the preconditioner

B s =∇∗Λ−(1+s)∇, (37)

where Λ is the operator realizing the H (div) inner product,

(Λv,w) = (v,w)+ (divv, divw) , v, w ∈H (div).

What is worth noting in (37) is that since 1+ s ≥ 0, and multigrid operators to approximate
Λ−1 are popular in the literature, we may hope that the middle middle factor in (37) can be
replaced by an additive multigrid operator, similar to the ones studied in Paper II.

In Paper III, we proceed by proving thatB s in the continuous setting is indeed spectrally
equivalent to (−∆)−s . This is proven by fairly well-known bounds on the gradient operator, to-
gether with standard interpolation theory. We then extend these results to the discrete setting,
where H s is discretized by discontinuous finite element spaces and H (div) is discretized by ei-
ther Raviart-Thomas- (RT) or Brezzi-Douglas-Marini (BDM) spaces. The arguments made in
the discrete setting are fairly similar to the continuous case, but we make abundant use of
Jensen’s inequality to get sharper bounds.

The remainder of the paper is then devoted to analyzing additive multigrid operators to
precondition fractional powers of Λ. The analysis follows closely the analysis in Paper II, but
we need to make assumptions on some two-grid error bounds for Λ to complete the analysis.
Proving these assumption falls beyond the scope of the current work, but we provide sugges-
tions of techniques to proving them, as well as substantiating their veracity.

As with the preceeding papers, Paper III is concluded with a series of numerical experi-
ments to validate our theoretical results. The numerical tests also suggest that the additive
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multigrid preconditioner is effective for fractional H (div) problems and as a replacement of
the middle factor in (37).

Future work

An obvious continuation of this work is to get a firmer theoretical grounding for the additive
multigrid operator fractional H (div) operators. As outlined in the paper, techniques used in
[18] for elliptic operators might prove fruitful in this regard.

Another shortcoming of the current work is that we only consider discontinuous finite
element spaces to discretize (−∆)s . This was mainly due to the fact that the discrete gradi-
ent operator is well-known to be injective into the considered discrete H (div) spaces. The
same does not quite hold true for continuous finite element spaces. To remedy this, there
are at least two options available. As one option, you can increase the degree on the H (div)
discretization so that ∇ becomes injective. This means that size of fractional H (div) precon-
ditioner becomes large, which might not be desirable in implementation. The second option
is to discretize H (div) using H (curl)-conforming finite element spaces for which injectivity
of the gradient operator is known. Then one has to come up with a suitable discrete opera-
tor to represent Λ, and design efficient preconditioners for fractional powers of it. This falls
outside the framework we have put forth in Paper III, as we did not consider non-conforming
methods.

As an additional direction for generalization, one could consider the full de Rham com-
plex. The auxiliary space preconditioner constructed in Paper III relies on the inf-sup stabil-
ity of the divergence operator from the RT- or BDM spaces onto the space of discontinuous,
piecewise polynomials. It is well-known that this property is a special case of cohomology pre-
serving discretizations of the de Rham complex, [9]. As a consequence, we can expect similar
auxiliary space preconditioners to prove effective in preconditioning e.g. Λs when s ∈ [−1,0].
Granted though that applications of this to physical models seems more scarce.

Paper IV
This paper is a note on robust preconditioners for the mixed formulation of the Darcy prob-
lem. That is, we consider the problem of finding u and p so that

1
K

u−∇p = f, in Ω

divu= g , in Ω.
(38)

paired with suitable boundary conditions. System (38) is one of the simplest models for
pressure-driven fluid flow through a porous medium. Here, p plays the role of pressure, while
u is the fluid flux. The permeability is denoted by K , and models the resistance in the medium
to the flow.

A variational formulation of (38) yields an operator characterizing the left-hand side given
by

A =
�

K−1 −∇
div 0

�
.

In this note, we introduce the spaces

V=K−1/2L2 ∩H (div), and Q = L2+K1/2H 1
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with norms given by

‖v‖2
V =K−1 ‖v‖2+ ‖divv‖2 , v ∈H (div)

‖q‖2
Q = inf

φ∈H 1

�‖q −φ‖2+K ‖∇φ‖2� , q ∈ L2.

See [15] for further details on sum- and interpolation spaces. We further show thatA : V×
Q → V∗×Q∗ is a homeomorphism with bounds independent of K ∈ (0,∞). This suggests
that the canonical preconditionerB takes the forms

B =
��

K−1I −∇div
�−1 0

0 I +(−K∆)−1

�
. (39)

We continue by considering the discretization of (38) using mixed finite elements. In par-
ticular, we consider discretizing V using either Raviart-Thomas- or Brezzi-Douglas-Marini el-
ements, and piecewise polynomial, discontinuous elements to discretize Q. The subsequent
analysis is analogous to the continuous case, but we introduce a discrete gradient operator,∇h ,
which facilitates the definition of a discrete Q-norm. We establish that the discrete operator
Ah satisfies the appropriate K -independent bounds.

The note is concluded on some numerical tests validating the proposed preconditioner
structure.

A point worth making at this point is that in this work our analysis is concerned with the
variational formulation of (38) seeking u ∈ H (div) and p ∈ L2. However, (38) is also well-
posed when considering u ∈ L2 and p ∈H 1. See examples 3.2 and 3.3 in [63]. Of course, also
in this formulation the norms must be modified to achieve the desired K -robustness. This
approach leads to the block-diagonal preconditioner

�
K 0
0 (−K∆)−1

�
.

The second block in the above can be viewed as the inverse of the Schur complement ofA ,
and as a consequence, discrete preconditioners based on this approach will be robust in K ,
[65]. Comparing this with (39) we see that in either approach, we cannot do away with the
Schur complement.
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WEAKLY IMPOSED SYMMETRY AND ROBUST PRECONDITIONERS FOR
BIOT’S CONSOLIDATION MODEL

TRYGVE BÆRLAND†, JEONGHUN J. LEE‡, KENT-ANDRE MARDAL†, AND RAGNAR WINTHER†

ABSTRACT. We discuss the construction of robust preconditioners for finite element approxi-
mations of Biot’s consolidation model in poroelasticity. More precisely, we study finite element
methods based on generalizations of the Hellinger-Reissner principle of linear elasticity, where
the stress tensor is one of the unknowns. The Biot model has a number of applications in sci-
ence, medicine, and engineering. A challenge in many of these applications is that the model
parameters range over several orders of magnitude. Therefore, discretization procedures which
are well behaved with respect to such variations are needed. The focus of the present paper will
be on the construction of preconditioners, such that the preconditioned discrete systems are
well-conditioned with respect to variations of the model parameters as well as refinements of
the discretization. As a biproduct, we also obtain preconditioners for linear elasticity that are
robust in the incompressible limit.

1. INTRODUCTION

The purpose of this paper is to discuss a family of finite element methods for Biot’s consol-
idation model, with a focus on the construction of preconditioners for the discrete systems.
The Biot model describes the deformation of an elastic porous medium saturated by a viscous
fluid, leading to a system which describes the coupling between the elastic behaviour of the
medium and the fluid flow. Therefore, the finite element systems will contain discrete versions
of linear elasticity and porous medium flow as proper subsystems. The methods studied here
are based on mixed finite element methods with weakly imposed symmetry for the elasticity
part. In this respect, the methods presented here are generalizations of the methods for linear
elasticity discussed in [4].

With Ω being an open domain in Rn, the Biot model is a coupled system of partial differ-
ential equations of the form

(1.1)
−divC ε (u)+αgrad p = f in Ω,

s0 ṗ +αdiv u̇ − div(cgrad p) = g in Ω,

where the dots denote time derivation. The unknowns are the displacement of the structure
u, and the pore pressure p. The differential operator ε is the symmetric gradient and C is
the stiffness tensor which describes the strain-stress relation. The parameters s0 and α are
the so-called constrained specific storage coefficient and the Biot-Willis constant, respectively.
Finally, c is the hydraulic conductivity, determined by the permeability of the medium and
the fluid viscosity, while f and g are given momentum- and mass sources, respectively.

In this paper, we will consider linear, isotropic elasticity, in which case the stiffness tensor
is modelled as

(1.2) C ε (u) = 2µε (u)+λ trε (u)I≡ 2µε (u)+λ(div u)I,
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where µ,λ are the Lamé coefficients. We will allow the parameters µ, λ, and s0 to be spatially
varying, scalar valued functions, c is a symmetric positive definite matrix-valued function,
while α ∈ (0,1] is constant. The well-posedness of system (1.1), with appropriate boundary
and initial conditions, is discussed in [29].

The Biot system arises as a key model in many practical applications, such as in geoscience
and in the modelling of soft tissues of the central nervous system. For many of these ap-
plications, the variations of the parameters will be quite large. For example, in geophysical
applications the permeability may vary in the range from 10−9 to 10−21 m2, [12, 34], while
the Lamé coefficient λ can vary between 500 and 106 Pa in neurological applications [30, 32].
For a further discussion of relevant properties of the model parameters of the system (1.1), we
refer to [20] and references given there.

Due to the wide range of physical applications of the Biot model, there is a need for numer-
ical methods which behave robustly with respect to these variations of the model parameters.
A number of finite element methods for the Biot model have previously been proposed in
the literature. These studies include various primal methods [27, 33, 37], mixed methods
[6, 22, 23, 36], and a discontinuous Galerkin method [10]. Combinations of these methods
have also been proposed, see for example [18, 25, 26, 24, 35], while parameter-robust precon-
ditioners are discussed in [5, 16, 28]. In fact, this was also the main theme of the paper [20],
where the discretization is based on a standard H 1 formulation of the flow, combined with
discretizing the elasticity part using stable mixed finite elements for the Stokes equation. A
standard approach to obtain a locking free displacement method for linear elasticity, i.e., a
method which behaves well for large Lamé parameters λ, is to introduce “solid pressure” as
an additional unknown. This approach leads to a three-field formulation for the Biot model,
where the unknowns are the displacement of the medium and the two pressures. The discus-
sion in [20] shows that, in contrast to the situation for linear elasticity, this approach may not
lead to a robust discretization of the Biot system. However, by introducing a new unknown,
the so-called “total pressure”, a robust discretization is obtained. In fact, the robustness of the
discretization both with respect to the model parameters λ, c, and the discretization parame-
ter h are obtained. Furthermore, robust preconditioners are constructed, i.e., preconditioners
that behave uniformly well with respect to variations of the model parameters and refinements
of the discretization.

The present paper can be seen as a continuation of [20], where the discretization of the
elasticity part of the system is based on the mixed methods proposed in [4]. The mixed finite
element methods studied in [4] are based on the Hellinger-Reissner variational principle of lin-
ear elasticity. An advantage of this approach is that robustness of the methods with respect to
the Lamé parameter λ is more or less obtained automatically and that the stress tensor, which
is of more interest in some applications, is computed directly. On the other hand, a difficulty
of these methods is to construct stable finite element function spaces of exactly symmetric
stress tensors. Therefore, the methods proposed in [4], based on weakly symmetric stresses,
are employed. In the present paper, we generalize these methods to the Biot model. This
leads to a four-field formulation where the unknowns are the stress tensor, the displacement
of the structure, the pore pressure, and additionally a Lagrange multiplier which results from
the weakly imposed symmetry constraint. The main purpose of the present paper is to dis-
cuss the properties of these finite element systems. In particular, as in [20], we will focus on
the construction of robust preconditioners for the stationary systems obtained from a time
discretization of the evolution problem (1.1).

This paper is organized as follows. In Section 2 we establish the notation that will be used
throughout the paper and we give a brief description of the main strategy on how to construct
preconditioners that are robust with respect to model parameters and mesh refinement. A
proper weak formulation of a semidiscrete version of the Biot model, with four primary un-
knowns, is also stated in Section 2. Section 3 is devoted to parameter-robust stability results
for both the continuous and discrete version of this problem, while more detailed discussions
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of the construction of the corresponding preconditioners are given in Section 4. Finally, in
Section 5 we present a few numerical experiments aimed at validating the theoretical results,
followed by some concluding remarks in Section 6.

2. PRELIMINARIES

We will denote byΩ a bounded domain inRn, with n = 2 or 3, and boundary ∂ Ω. The space
of column n-vectors is written V = Rn, andM will denote the space of n × n real matrices.
Then, S andK are the subspaces of symmetric- and skew symmetric matrices, respectively.

In the following, H k = H k(Ω) will denote the Sobolev spaces of functions on Ω with all
derivates of order up to, and including, k in L2(Ω), and its norm is denoted by ‖·‖k . In addition,
H k

0 will denote the closure of C∞0 (Ω) in H k . If X is an inner product space, L2(Ω;X) denotes
the space of X-valued, square integrable functions, and its norm and inner product will be
denoted by ‖·‖0 and (·, ·), respectively.

Next, H (div,Ω) = H (div,Ω;V) will denote the Sobolev space of vector fields on Ω in
L2(Ω;V) with divergence in L2(Ω), and its norm is denoted by ‖·‖div :=

�‖·‖2
0+ ‖div ·‖2

0

�1/2
.

Similarly, H (div,Ω;M) will be functions in L2(Ω;M) with divergence in L2(Ω;V), where the
divergence is taken by rows.

For a Hilbert space X , we denote its inner product by 〈·, ·〉X , except in the special case of
X = L2(Ω) already described, in which case (·, ·) is the inner product. If we let X ∗ denote a
representation of the dual of X , the duality pairing between X and X ∗ will be denoted by
〈·, ·〉. We will in the context of Sobolev spaces choose the representation X ∗ so that the duality
pairing is an extension of the L2 inner product. If Y denotes an additional Hilbert space,
L (X ,Y ) denotes the space of bounded, linear operators from X to Y . If T ∈ L (X ,Y ∗), we
denote its adjoint by T ∗, which is an element ofL (Y,X ∗).

2.1. Abstract preconditioning of parameter dependent systems. To motivate the analysis
below, we will briefly discuss an abstract framework for preconditioning systems of partial
differential equations and their discrete counterparts. For a more thorough discussion of this
framework, we refer to [20, 21].

Let X be a real, separable Hilbert space. Suppose that A ∈ L (X ,X ∗) is a linear and
bounded operator, which is invertible with bounded inverse. Assume further thatA is sym-
metric, i.e.,

〈A x, y〉= 〈x,A y〉 , ∀x, y ∈X .
We then consider the problem of finding x ∈X so that

(2.1) A x = f

in X ∗ for a given f ∈X ∗. Applying a symmetric, positive definite operatorB ∈L (X ∗,X ) to
problem (2.1) gives the preconditioned problem of finding x ∈X so that

BA x =B f

in X . The convergence rate of a Krylov subspace method applied to the preconditioned prob-
lem is controlled by the condition number

K(BA ) = ‖BA‖L (X ,X )



(BA )−1

L (X ,X )

in the way that a large value of K(BA ) will generally lead to slow convergence.
We note that one possible choice of the operatorB is the Riesz map from X ∗ to X , or in

fact, any operator spectrally equivalent to it. For linear systems arising as discretizations of
partial differential equations an effective preconditioner also has to be easy to evaluate, i.e.,
we require that the action of the operator can be evaluated cheaply. For systems of partial
differential equations, this point of view naturally leads to block diagonal preconditioners,
where the blocks correspond to preconditioners of simpler and more canonical operators. For
example, in the case of operators corresponding to stable discretizations of the inner products
of Sobolev spaces like X = H 1, X = H (curl), and X = H (div), efficient algorithms that
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are spectrally equivalent to the Riesz map from X ∗ to X can be constructed with multilevel
algorithms, cf. e.g., [3, 9, 17].

Preconditioning of parameter dependent problems follows in a similar manner. Let Aε
denote an operator depending on some collection of parameters ε. To construct a precondi-
tioner forAε, we determine an ε-dependent Hilbert space, Xε, such thatAε is a linear, sym-
metric map from Xε to X ∗ε . Furthermore, the corresponding operator norms ‖A −1

ε ‖L (X ∗ε ,Xε)
and ‖Aε‖L (Xε,X ∗ε ) should be bounded independently of ε. Having determined Xε, a suitable
preconditioner is then a symmetric, positive definite operatorBε from X ∗ε to Xε, where the
operator norms of ‖Bε‖L (X ∗ε ,Xε)

and ‖B−1
ε ‖L (Xε,X ∗ε )are bounded independently of ε. We are

then guaranteed that the condition number K(BεAε) is bounded independently of ε, and, as
a consequence, the performance of a Krylov subspace method will be ε independent.

2.2. Variational formulation. An implicit time discretization of the system (1.1), with time
step∆t , will typically lead to a stationary system of the form

(2.2)
−divC ε (u)+αgrad p = f in Ω,

s0 p +αdiv u −∆t div(cgrad p) = g in Ω.

Here g encapsulates information about both the mass source and previous time steps. Further-
more,∆tc can be regarded as one single parameter, which carries information about both the
time discretization and the conductivity. Therefore, ∆t is set equal to one in the discussion
below, while the matrix valued function c is assumed to be symmetric positive definite, but
can be arbitrarily small. For parameter ranges of practical problems, it is typical that α > 0 is
of order 1, 1 ® µ® λ, and µ� λ holds if the elastic matrix is nearly incompressible, i.e. if λ
is large.

Since rescaling of the spectrum of (2.2) does not influence preconditioning, we rescale the
system with a constant of order µ, say µ0. More specifically, λ, α, s0, f , c , g are replaced
by λ/µ0, α/µ0, ..., g/µ0. However, we shall use same symbols µ, λ, etc. for the rescaled
parameters for simplicity of notation. As a consequence, in the rest of the paper, we assume
that the first Lamé coefficient µ is of order 1, and other parameters are in the ranges

(2.3) 1® λ <+∞, 0<α≤ 1, 0< c≤ 1.

Because we consider a formulation different from the one used in [20], some unknowns are
also rescaled physical quantities in this paper. For example, σ := 2µε (u) + (nλdiv u − α p)I
is the stress tensor in the original constitutive law. However, in the rest of the paper, µ, λ, α
are parameters rescaled by µ0, therefore σ is the stress tensor rescaled by µ0.

The condition on c given in (2.3) means that the pointwise eigenvalues of c are uniformly
bounded below by 0 and above by 1. The constrained specific storage coefficient is assumed
to satisfy the relation s0 =

α2

λ . This assumption is mostly for sake of brevity, and the following

analysis will work even if s0 is only bounded from below by a constant times α2

λ . We refer to
[20] for a more detailed discussion of scaling of the Biot system.

For (2.2) to be well-posed, it needs to be augmented with a set of boundary conditions. To
that end, we introduce two separate partitions of the boundary, ∂ Ω= Γp ∪Γ f = Γd ∪Γt , where
Γp and Γd should have positive meaure, i.e., |Γp |, |Γd | > 0. General boundary conditions can
then be posed as

p(t ) = p0(t ) on Γp ,

(cgrad p(t )) · ν̂ = z ν̂(t ) on Γ f ,

u(t ) = u0(t ) on Γd ,

σ(t )ν̂ = (C ε (u)−α pI)ν̂ = σν̂(t ) on Γt .

For simplicity, we will in this paper only consider homogeneous boundary conditions. That
is, p0, z ν̂ , u0,σν̂ = 0.

4



For the weak formulation, we introduce a new unknown, the stress tensor, defined as

(2.4) σ :=C ε (u)−α pI,
and we denote the inverse of the stiffness tensor by A = Aµ,λ := C −1, which is an operator
acting on S. With the stiffness tensor given by (1.2), we obtain

(2.5) Aσ =
1

2µ

�
σ − λ

2µ+ nλ
tr(σ)I

�
.

Furthermore, we note that the trace of (2.5) is given by

(2.6) trAσ =
1

2µ+ nλ
trσ .

By using (2.4) and (2.6), we can express the term αdiv u in the second equation of (2.2) as a
function of σ and p as

αdiv u = α trA(σ +α pI) =Kσ +
nα2

2µ+ nλ
p,(2.7)

where K =Kα,µ,λ :M→R is the operator defined pointwise by

(2.8) K τ :=
α

2µ+ nλ
trτ.

After introducing σ defined by (2.4), and using (2.7), (2.2) becomes

Aσ +K∗ p − ε (u) = 0 in Ω,

Kσ +B p − div(cgrad p) = g in Ω,

−divσ = f in Ω.

Here, K∗ denotes the operator p 7→ α
2µ+nλ pI, while B = Bα,µ,λ is the operator defined by

(2.9) B p :=
�

s0+
nα2

2µ+ nλ

�
p ≡ α

2

λ

�
1+

nλ
2µ+ nλ

�
p.

To complete the formulation, we enforce the symmetry of the stress tensor in a weak manner,
i.e., σ is nowM-valued, instead of S, and we require that

(σ ,η) = 0 ∀η ∈ L2(Ω;K).
The trade off is that we need to introduce a Lagrange multiplier, γ , which will also play the
role of the skew symmetric part of gradu. This relaxation of the symmetry on σ also requires
us to extend the definition of A from S to all tensorsM. We denote this extension by A as well,
since it will also be given by formula (2.5).

The system now reads

(2.10)

Aσ +K∗ p − gradu + γ = 0 in Ω,

Kσ +B p − div(cgrad p) = g in Ω,

−divσ = f in Ω,

(σ ,η) = 0 ∀η ∈ L2(Ω;K).
Defining the function spaces

(2.11)

Σ=
¦
τ ∈H (div,Ω;M) : τ · ν̂ |Γt = 0

©
,

Q =
¦

q ∈H 1(Ω) : q |Γp
= 0

©
,

V = L2(Ω;V),
Γ = L2(Ω;K),
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an appriopriate weak formulation of (2.10) is: Find (σ , p, u,γ ) ∈Σ×Q ×V × Γ so that

(2.12)

(Aσ ,τ)+ (p,Kτ)+ (u,divτ)+ (γ ,τ) = 0 ∀τ ∈Σ,

(Kσ , q)+ (B p, q)+ (cgrad p, grad q) = (g , q) ∀q ∈Q,

(divσ , v) =− ( f , v) ∀v ∈V ,

(σ ,η) = 0 ∀η ∈ Γ .
In matrix-vector form, the system (2.12) reads

(2.13) A



σ
p
u
γ


 :=




A K∗ −grad skw∗

K B − div(cgrad) 0 0
div 0 0 0
skw 0 0 0






σ
p
u
γ


=




0
g
− f
0


 ,

where skw :M→K is the operator returning the skew-symmetric part of a tensor, in which
case skw∗ : K → M is simply the inclusion operator. From (2.13), we see that the system
exhibits a saddle point structure, and so well-posedness is ensured if the provided function
spaces satisfies the stability conditions in Brezzi’s theory of mixed methods (cf. [8]). We
introduce the inner products

(2.14)

〈σ ,τ〉Σ =
�

1
2µ
σ ,τ

�
+(divσ ,divτ) ∀σ ,τ ∈Σ,

〈p, q〉Q = (B p, q)+ (cgrad p, grad q) ∀p, q ∈Q,

〈u, v〉V = (u, v) ∀u, v ∈V ,

〈γ ,η〉Γ = (γ ,η) ∀γ ,η ∈ Γ ,
and define χ :=Σ×Q×V × Γ with inner products inherited from (2.14). With this notation
the left-hand side of (2.12) can alternatively be written as 〈A (σ , p, u,γ ), (τ, q , v,η)〉, where
the operator A : χ → χ ∗ will be bounded. In fact, in the case when |Γt | > 0 the operator
A will be bounded independently of α, λ, and c, and to establish this uniform bound will be
a main topic of the next section. However, in the clamped case, i.e., the case when |Γt | = 0,
we need to alter the norm of the space Σ to obtain a corresponding uniform bound. This
discussion will also be given in the following section.

We end this section with the following remark.

Remark 1. As already noted, the coefficient matrix form in (2.13) exposes the saddle point
structure of the system. However, worth noting is that a simple rearrangement of the terms
leads to the system

(2.15) A



σ
u
γ
p


 :=




A −grad skw∗ K∗
div 0 0 0
skw 0 0 0
K 0 0 B − div(cgrad)






σ
u
γ
p


 .

From this, we can consider the system as a coupling between a mixed formulation of linear
elasticity with weakly imposed symmetry in the unknown (σ , u,γ ), and a reaction-diffusion
equation in the pore pressure p. We will see that this observation will bear out stable finite
element discretizations of this system.

3. PARAMETER ROBUST STABILITY

The purpose of this section is to establish stability bounds for the system (2.12) or equiva-
lently (2.13). Note that this system depends on the parameters α,µ,λ implicitly through the
definition of the operators A, B , and K , and explicitly of the hydraulic conductivity c. How-
ever, our goal is to establish stability bounds where the stability constant is independent of
these parameters, as long as they vary as specified in the beginning of Section 2.2. On the
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other hand, we will allow the norms to depend on these parameters. More precisely, for the
case |Γt | > 0 we will use the norms given by the inner products specified in (2.14), while the
inner product of the space Σ has to be altered slightly in the clamped case, i.e., when |Γt |= 0.
As we will see in the next section this perturbation will also have an effect on the construction
of robust preconditioners.

3.1. The continuous case. We will first consider the case when |Γt | > 0. We introduce the
two projections in L2(Ω;M)

P0τ := τ− 1
n

�
1
|Ω|

∫
Ω

trτdx
�
I, PDτ := τ− 1

n
trτI.

That is, P0 projects τ to its mean trace-free part, whereas PD projects τ to its pointwise trace-
free part. It then follows by algebraic considerations that

(3.1) P0PD = PD P0 = PD .

It is worthwhile to note that since divP0 = div on Σ, P0 is also an orthogonal projection on
Σ, not only on L2(Ω;M). An algebraic manipulation gives

(Aτ,τ) =
�

1
2µ
τ,τ

�
−
�

λ

2µ(2µ+ nλ)
trτ, trτ

�

=
�

1
2µ

PDτ, PDτ

�
+
�

1
2µ+ nλ

(I − PD)τ, (I − PD)τ
�

where the second equality follows from τ = PDτ+(I−PD)τ and the pointwise orthogonality
of PDτ and (I − PD)τ =

1
n trτI. From this, a two-sided bound of (Aτ,τ)

(3.2)
�

1
2µ

PDτ, PDτ

�
≤ (Aτ,τ)≤

�
1

2µ
τ,τ

�

follows. We will use the following bound

(3.3)
�

1
2µ
τ,τ

�
≤C

��
1

2µ
PDτ, PDτ

�
+ ‖divτ‖2

0

�
, τ ∈Σ,

where the constant C is independent of τ and λ. This bound leads to stability of linear elas-
ticity in the incompressible limit, i.e., when λ = +∞, and was used already in [2] to obtain
robust stability of mixed finite element methods for such problems. The bound (3.3), along
with (3.5) given below, will also be crucial for the construction of robust preconditioners for
the Biot model. We therefore provide proofs of these estimates in Appendix A for the sake of
completeness.

As a consequence of the (3.3), we observe that the following equivalence follows.

Lemma 3.1. Assume Σ is given by the first definition in (2.11) with |Γt |> 0. There is a constant
C > 0 such that

(3.4) (Aτ,τ)+ ‖divτ‖2
0 ≤ 〈τ,τ〉Σ ≤C ((Aτ,τ)+ ‖divτ‖2

0)

for every τ ∈Σ. In particular, the constant C is independent of λ.

Proof. The first inequality of (3.4) follows immediately from (3.2). The second inequality
follows as

〈τ,τ〉Σ ≤C
��

1
2µ

PDτ, PDτ

�
+ ‖divτ‖2

0

�
≤C ((Aτ,τ)+ ‖divτ‖2

0),

using (3.3) and (3.2). �
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In the case of |Γt | = 0, the constant matrix field τ = I is an element of Σ, and (Aτ,τ) +
‖divτ‖2

0→ 0 as λ→ +∞. Therefore, we cannot hope to extend the λ-robust equivalence of
Lemma 3.1 to the case Γd = ∂ Ω. In fact, τ = cI, for any nonzero c ∈ R is the only case that
the equivalence fails. Excluding the span of {I} from Σ, we can still have a bound similar to
(3.4) as

(3.5)
�

1
2µ

P0τ, P0τ

�
≤C

��
1

2µ
PDτ, PDτ

�
+ ‖divτ‖2

0

�
, τ ∈Σ,

which is also proved in [2]. We can use (3.5) to establish that the operator A− graddiv is
spectrally equivalent to the µ-scaled H (div) inner product over P0(Σ), i.e., the subspace of Σ
consisting of matrix fields with zero mean trace. On the other hand, for τ ∈ (I − P0)(Σ), τ is
a constant multiple of identity matrix field, so

(Aτ,τ) =
�

1
2µ+ nλ

(I − P0)τ, (I − P0)τ
�

.

This gives a motivation to define an auxiliary inner product 〈·, ·〉Σ̃ on Σ as

(3.6) 〈σ ,τ〉Σ̃ :=
�

1
2µ

P0σ , P0τ

�
+
�

1
2µ+ nλ

(I − P0)σ , (I − P0)τ
�
+(divσ ,divτ) ,

for σ ,τ ∈ Σ. The following lemma states that this inner product is spectrally equivalent to
the inner product derived from A− graddiv.

Lemma 3.2. Assume |Γt |= 0. There exists a positive constant C such that

(3.7) C−1((Aτ,τ)+ ‖divτ‖2
0)≤ 〈τ,τ〉Σ̃ ≤C ((Aτ,τ)+ ‖divτ‖2

0).

In particular, the constant C is independent of λ.

Proof. Since P0 is an orthogonal projection on Σ, in both inner products, it is sufficient to
consider τ ∈ P0(Σ) and τ ∈ (I − P0)(Σ) separately.

If τ ∈ (I − P0)(Σ), then P0τ = 0 and τ is a constant multiple of the identity matrix field, so

〈τ,τ〉Σ̃ = (Aτ,τ)+ ‖divτ‖2
0 ,

which verifies (3.7) in this case.
Next, if τ ∈ P0(Σ), i.e., τ = P0τ, we have from (3.2) and (3.5) that

(Aτ,τ) = (AP0τ, P0τ)≤
�

1
2µ

P0τ, P0τ

�
≤C

��
1

2µ
PDτ, PDτ

�
+ ‖divτ‖2

0

�

and from the pointwise orthogonality of (I − PD)τ = (P0− PD)τ and PDτ that

〈τ,τ〉Σ̃ =
�

1
2µ

P0τ, P0τ

�
+ ‖divτ‖2

0 ≥
�

1
2µ

PDτ, PDτ

�
+ ‖divτ‖2

0 .

The left inequality of (3.7) easily follows from the above two inequalities. Furthermore, using
(3.5) and (3.2), we obtain

〈τ,τ〉Σ̃ =
�

1
2µ

P0τ, P0τ

�
+ ‖divτ‖2

0

≤C
��

1
2µ

PDτ, PDτ

�
+ ‖divτ‖2

0

�

≤C ((Aτ,τ)+ ‖divτ‖2
0)

which is the right inequality of (3.7).
�
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We recall that the space χ =Σ×Q×V×Γ was introduced in Section 2.2 for the case when
|Γt | > 0. For the clamped case, i.e., when |Γt | = 0, we consider the modified space given by
χ̃ := Σ̃×Q ×V × Γ , where Σ̃ = H (div,Ω;M), and with inner product given by (3.6). As
a consequence of the spectral equivalences (3.4) and (3.7), we obtain that the operator A is
bounded as an operator in L (χ ,χ ∗) when |Γt | > 0, and as an operator in L (χ̃ , χ̃

∗
) in the

clamped case when |Γt |= 0. More precisely, we have the following result.

Theorem 3.1. Assume that the parameters λ, α, and c satisfies condition (2.3). Let X = χ if
|Γt |> 0, and X = χ̃ if |Γt |= 0. Then, for the system (2.12) there is a constant β> 0, independent
of λ, α, and c, so that the following inf-sup condition holds:

(3.8) inf
(σ , p,u,γ )∈X

sup
(τ,q ,v,η)∈X

〈A (σ , p, u,γ ), (τ, q , v,η)〉
‖(σ , p, u,γ )‖X ‖(τ, q , v,η)‖X

≥β.

Proof. Consider first the case with |Γt | > 0, so that X = χ . To prove (3.8), we will show
that there exist positive constants C1, C2, so that for every 0 6= (σ , u,γ , p) ∈ χ there are
(τ, v,η, q) ∈ χ so that

(3.9)
‖(τ, q , v,η)‖χ ≤C1 ‖(σ , p, u,γ )‖χ ,

〈A (σ , p, u,γ ), (τ, q , v,η)〉 ≥C2 ‖(σ , p, u,γ )‖2
χ ,

the key being that C1 and C2 will be independent of λ, α, and c.
To verify (3.9), let (σ , u,γ , p) ∈ χ be nonzero but otherwise arbitrary. From the theory of

mixed elasticity with weakly enforced symmetry (see e.g., [4, 7]), there exists a β0 > 0, and
τ̃ ∈Σ so that

(3.10)

div τ̃ = u,

(τ̃,η) = (γ ,η) ∀η ∈ L2(Ω;K),
‖τ̃‖2

Σ ≤β2
0

�‖u‖2
0+ ‖γ‖2

0

�
,

with β0 depending only on Ω. From (3.4), we see that

(3.11) (Aτ̃, τ̃)≤β2
0

�‖u‖2
0+ ‖γ‖2

0

�
.

By setting τ = σ +δ0τ̃, v =−u +δ1divσ , η=−γ , and q = p, we find that

‖(τ, q , v,η)‖χ ≤
Æ

2(1+max(δ2
0β

2
0,δ

2
1 ))‖(σ , p, u,γ )‖χ ,

which verifies the first inequality in (3.9). To prove the second inequality in (3.9), we begin by
observing that after cancelling terms we obtain the identity

〈A (σ , p, u,γ ), (τ, q , v,η)〉= (Aσ ,σ)+δ0 (Aσ , τ̃)+ 2 (p,Kσ)+ ‖p‖2
Q(3.12)

+δ0 (p,K τ̃)+δ0

�‖u‖2
0+ ‖γ‖2

0

�
+δ1 ‖divσ‖2

0 ,

where we have used the properties of τ̃. To bound the three cross terms, we use Cauchy-
Schwarz and Young’s inequalities in a standard way. For the term (Aσ , τ̃), this and (3.11)
yield

(3.13) (Aσ , τ̃)≤ ε1

2
(Aσ ,σ)+

1
2ε1

(Aτ̃, τ̃)≤ ε1

2
(Aσ ,σ)+

β2
0

2ε1

(‖u‖2
0+ ‖γ‖2

0)

for any ε1 > 0. We can derive similar bounds for the two terms involving the operator K .
From the definition of K and Young’s inequality, we obtain

(3.14) (p,Kσ)≤ ε2

2

�
nα2

2µ+ nλ
p, p

�
+

1
2ε2

�
1

2µ+ nλ
trσ ,

1
n

trσ
�

.
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For the first term in (3.14), the definition of B in (2.9) yields�
nα2

2µ+ nλ
p, p

�
≤ 1

2
(B p, p)≤ 1

2
‖p‖2

Q .

Inserting this into (3.14), and using the properties of A, we obtain

(p,Kσ)≤ ε2

4
‖p‖2

Q +
1

2ε2

�
trAσ ,

1
n

trσ
�

(3.15)

=
ε2

4
‖p‖2

Q +
1

2ε2

�
Aσ ,

1
n

trσI
�
≤ ε2

4
‖p‖2

Q +
1

2ε2

(Aσ ,σ) ,

where ε2 > 0 is arbitrary. Furthermore, we have a similar bound

(p,K τ̃)≤ ε3

4
‖p‖2

Q +
1

2ε3

(Aτ̃, τ̃)≤ ε3

4
‖p‖2

Q +
β2

0

2ε3

(‖u‖2
0+ ‖γ‖2

0).

As a consequence, after using (3.13) and (3.15) in (3.12) and collecting terms, together with
using the properties of τ̃, we end up with

〈A (σ , p, u,γ ), (τ, q , v,η)〉 ≥
�

1− δ0ε1

2
− 1
ε2

�
(Aσ ,σ)

+δ0

�
1− β

2
0

2ε1

− β
2
0

2ε3

��‖u‖2
0+ ‖γ‖2

0

�

+
�

1− ε2

2
− δ0ε3

4

�
‖p‖2

Q +δ1 ‖divσ‖2
0 .

If we can choose δ0, ε1, ε2, and ε3 so that all the coefficients above are positive, this will prove
the second inequality in (3.9), because of (2.12). For instance, choosing δ0 =

1
6β2

0
, ε1 = ε3 =

2β2
0, ε2 =

3
2 , and δ1 =

1
6 yields

〈A (σ , p, u,γ ), (τ, q , v,η)〉 ≥ C
6
‖σ‖Σ+

1
12β2

0

�‖u‖2
0+ ‖γ‖2

0

�
+

1
6
‖p‖2

Q ,

in which case the second inequality in (3.9) holds with β= 1
6 min

�
C , 1

2β2
0

�
.

In the case that X = χ̃ the argument is almost completely analogous. In particular, (3.10)
continues to hold with ‖·‖Σ̃ instead of ‖·‖Σ since ‖τ‖Σ̃ ≤ ‖τ‖Σ for every τ ∈Σ. When X = χ̃
we must also use (3.7) instead of (3.4). Other than that, the argument remains unchanged. �

3.2. The discrete case. If we discretize (2.13) with finite element spaces Σh ⊂ Σ, Qh ⊂ Q,
Γh ⊂ Γ , and V h ⊂V , and define χ h =Σh ×Qh ×V h × Γh , the discrete formulation becomes:

Find (σh , ph , u h ,γh) ∈ χ h so that

(3.16)

(Aσh ,τ)+ (ph ,Kτ)+ (u h ,divτ)+ (γh ,τ) = 0 ∀τ ∈Σh ,

(Kσh , q)+ (B ph , q)+ (cgrad ph , grad q) = (g , q) ∀q ∈Qh ,

(divσh , v) =− ( f , v) ∀v ∈V h ,

(σh ,η) = 0 ∀η ∈ Γh .

Note that Γh is only a subspace of Γ , so symmetry of σh is imposed only weakly by the last
equation in (3.16).

The left-hand side of the system above can be written in the form 〈Ah(σ , p, u,γ ), (τ, q , v,η)〉,
whereAh : χ h → χ ∗

h is the corresponding discrete coefficient operator. Our goal is to estab-
lish a discrete version of Theorem 3.1, i.e., a stability bound where the stability constant is
independent of the model parameters as well as the mesh parameter h. We observe that the
key feature of the proof of Theorem 3.1 was the property (3.10), which corresponds to the
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stability of the underlying elasticity problem. For the proof to carry over to the discrete case,
the finite element spaces should satisfy a discrete variant of property (3.10). In other words,
the triple (Σh ,V h ,Γh) has to be a stable elasticity element. Therefore, we make the following
definition.

Definition 3.1. We say the function spaces Σh , V h , and Γh are elasticity stable if divΣh =V h ,
and there exists a constant C > 0, independent of discretization parameter h, such that for
any (u h ,γh) ∈V h × Γh , there exists τ ∈Σh satisfying

divτ = u h ,

(τ,η) = (γh ,η) ∀η ∈ Γh ,

‖τ‖div ≤C
�‖u h‖0+ ‖γh‖0

�
.

Examples of elasticity stable elements can be found in [4, 1, 7, 11, 13, 15, 19, 31].

Theorem 3.2. Let X = χ if Γt has positive measure, and if |Γt | = 0 let X = χ̃ . Suppose that
(Σh ,Vh ,Γh) in the discrete formulation (3.16) is elasticity stable, and that the parameter ranges
in (2.3) are satisfied. Setting χ h = Σh ×V h × Γh ×Qh , with the same norm as X , and defining
Ah : χ h → χ ∗

h , then there exists β> 0 such that

inf
(σ , p,u,γ )∈χ h

sup
(τ,q ,v,η)∈χ h

〈Ah(σ , p, u,γ ), (τ, q , v,η)〉
‖(σ , p, u,γ )‖X ‖(τ, q , v,η)‖X

≥β,

and β is independent of λ, α, c, and the discretization parameter h.

Proof. Analogous to the proof of Theorem 3.1, it is sufficient to prove that there exist constants
C1 and C2 so that for every 0 6= (σh , ph , u h ,γh) ∈ χ h there is (τ, q , v,η) ∈ χ h so that

‖(τ, q , v,η)‖χ ≤C1 ‖(σh , ph , u h ,γh)‖χ h
,

〈Ah(σh , ph , u h ,γh), (τ, q , v,η)〉 ≥C2 ‖(σh , ph , u h ,γh)‖2
χ

h
.

Fix (σh , ph , u h ,γh) ∈ χ h . Since Σh , V h , and Γh are elasticity stable, divσh ∈ V h and we can
choose τ̃ ∈Σh such that

divτ̃ = u h ,

(τ̃,η) = (γh ,η) ∀η ∈ Γh ,

‖τ̃‖div ≤C
�‖u h‖0+ ‖γh‖0

�
,

where the constant C is independent of h and model parameters. Setting τ = σh+δ0τ̃, q = ph ,
v =−u h +δ1divσh , and η=−γh , we have that (τ, q , v,η) ∈ χ h and

〈A (σh , ph , u h ,γh), (τ, q , v,η)〉= (Aσh ,σh)+δ0 (Aσh , τ̃)+ 2 (ph ,Kσh)+ ‖ph‖2
Q

+δ0 (ph ,K τ̃)+δ0

�‖u h‖2
0+ ‖γh‖2

0

�
+δ1 ‖divσh‖2

0 .

The rest of the proof is completely analogous to the proof of Theorem 3.1.
�

4. PRECONDITIONING

In this section, we will derive order optimal parameter-robust preconditioners for the dis-
cretized system. In the case where |Γt | > 0 it was shown in the previous section that the
continuous operator A : χ → χ ∗ was an isomorphism, where χ = Σ ×Q ×V × Γ . A
parameter-robust preconditioner is then constructed as an isomorphism B : χ ∗ → χ . The
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canonical choice, which is symmetric and positive definite, is:

(4.1) B =




�
1

2µ − graddiv
�

0 0 0
0 B − divcgrad 0 0
0 0 I 0
0 0 0 I




−1

In the discrete case, order optimal and spectrally equivalent realizations of the preconditioner
can be constructed by multigrid techniques. The first block requires H (div)-preconditioners
such as, e.g., [3, 17]. The second block is a second order elliptic operator for which multilevel
algorithms are well known. If V h and Γh are discontinuous finite element spaces, the third
and fourth blocks are block diagonal mass matrices and their exact inverses, which are cheaply
computable, can be used as preconditioners. When Γh is a Lagrange finite element (e.g., [7, 13]),
simple iterative methods such as Jacobi or symmetric Gauss-Seidel give preconditioners that
are spectrally equivalent to the inverse of the mass matrix.

The case |Γt | = 0 is more challenging and we recall that A is no longer stable in χ =
Σ×Q ×V × Γ . In fact, stability was obtained in the alternative space χ̃ = Σ̃×Q ×V × Γ .
Therefore, the canonical choice for a parameter-robust preconditioner is then the symmetric
and positive definite operator B̃ : χ̃

∗→ χ̃ defined by

(4.2) B̃ =




�
1

2µP0+
1

2µ+nλ(I − P0)− graddiv
�

0 0 0
0 B − divcgrad 0 0
0 0 I 0
0 0 0 I




−1

.

Here, Σ̃ is not a function space with standard H (div) norm, and it is not clear that the multi-
level algorithms developed for standard H (div) spaces result in efficient preconditioners in Σ̃.
Therefore, we will use a technique similar to the one used in [20]. In the rest of this section,
we assume that µ, λ are constant on Ω. We recall the Σ̃ inner product

〈σ ,τ〉Σ̃ =
�

1
2µ

P0σ , P0τ

�
+
�

1
2µ+ nλ

(I − P0)σ , (I − P0)τ
�
+(divσ ,divτ) .

To construct a preconditioner for this inner product we rely on the fact that we have efficient
preconditioners for the weighted H (div,Ω;M) inner product,

〈σ ,τ〉Σ =
�

1
2µ
σ ,τ

�
+(divσ ,divτ) .

Let {φi}Ni=1 be a basis for Σh ⊂Σ. Then we introduce the following matrices:

(4.3)

B̃i , j =
¬
φ j ,φi

¶
Σ̃

,

Bi , j =
¬
φ j ,φi

¶
Σ

,

(B0)i , j =
1

2µ

�
P0φ j , P0φi

�
+
�
divφ j ,divφi

�
,

(Bt )i , j =
1

2µ

�
(I − P0)φ j , (I − P0)φi

�
.

From (4.3) and (3.6), we see that

B=B0+Bt , B̃=B0+
2µ

2µ+ nλ
Bt .

Hence,

B̃=B−ρBt where ρ=
nλ

2µ+ nλ
.
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Considering the entries of Bt in more detail, we find that

(Bt )i , j =
1

2µ
1

n|Ω|
�∫
Ω

trφ j dx
��∫

Ω

trφi dx
�

=
1

2µ
mmT ,

where m ∈RN is the column vector with entries

(4.4) mi =
1p
n|Ω|

∫
Ω

trφi dx.

Thus, we have that

(4.5) B̃=B− ρ

2µ
mmT .

Next, we define w ∈RN to be so that

(4.6)
N∑

i=1

wiφi = I.

Lemma 4.1. Let {φi}Ni=1 be a basis for the finite dimensional function space Σh ⊂Σ and assume
that µ and λ are positive constants. With m ∈RN defined by (4.4), w ∈RN defined by (4.6), and
B the N ×N matrix defined by (4.3), the following identities hold:

(4.7) Bw =

p
n|Ω|
2µ

m, wT m =
p

n|Ω|.

Proof. For the first identity in (4.7), we use the definition of m, w and B to see that the i ’th
component of Bw is

(Bw)i =
N∑

j=1

¬
w jφ j ,φi

¶
Σ
=

1
2µ
(I,φi ) =

p
n|Ω|
2µ

mi .

Similarly, the second identity of (4.7) follows by

wT m =
1p
n|Ω|

∫
Ω

N∑
i=1

tr wiφi dx =
1p
n|Ω|

∫
Ω

trIdx =
p

n|Ω|.

�

Corollary 4.1. Under the same assumptions as in Lemma 4.1, and B̃ the N ×N matrix defined
by (4.3), it holds that

(4.8) B̃=VT
λBVλ,

where

(4.9) Vλ = I+ aw mT ,

with a = 1p
n|Ω|(−1+

p
1−ρ). Moreover, Vλ is invertible with inverse given by

(4.10) V−1
λ
= I+ b w mT ,

where b = 1p
n|Ω| ·

1−
p

1−ρp
1−ρ .
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Proof. By matrix multiplication and the identities in (4.7), we get

VT
λBVλ = (B+

a
p

n|Ω|
2µ

mmT )(I+ aw mT )

=B+ 1
2µ
(2a
p

n|Ω|+ a2n|Ω|)mmT ,

and inserting the value of a yields

VT
λBVλ =B−

ρ

2µ
mmT = B̃.

This proves (4.8) and further, using the second identity in (4.7), we see that

(I+ b w mT )Vλ = I+(a+ b + ab
p

n|Ω|)w mT .

With the given values of a and b the second term vanishes, so (4.10) is proved. �
Lemma 4.2. Suppose that D is a preconditioner for B with condition number K(DB), then

(4.11) D̃=V−1
λ
DV−T

λ
,

where V−1
λ

is given by (4.10), is a preconditioner for B̃ and K(D̃B̃) = K(DB). In particular, the
condition number is independent of λ.

Proof. It is seen, using (4.8), that

D̃B̃=V−1
λ
DV−T

λ
VT
λBVλ =V−1

λ
DBVλ.

We see from this that D̃B̃ and DB are similar matrices, and so their eigenvalues coincide. �
Hence, the well-known preconditioners for the weighted H (div,Ω;M) inner productB can

be reused such that we obtain a preconditioner spectrally equivalent to B̃. Furthermore, the
preconditioner D̃ can then be implemented efficiently by applying V−T

λ
, D, and V−1

λ
sequen-

tially. Note that due to the presence of w mT ,V−T
λ

andV−1
λ

are both generally dense matrices.
Therefore, the action of w mT on a vector v ∈ RN should be implemented as w(mT v), i.e.,
the dot product with m and a scaling of w.

5. NUMERICAL RESULTS

In this section, we present a series of experiments that demonstrate the performance of the
proposed preconditioners. In all of following numerical experiments Ω is taken to be the unit
square (0,1)2 divided in N ×N squares, where each square is divided in two triangles. The
parameters α, c, µ, and λ are all constants throughout the domain, unless stated otherwise.
We let µ = 1

2 be fixed but vary α, c, and λ in the experiments. Specifically, in Case 1 we
will validate the spectral equivalences (3.4) and (3.7) for both fully clamped- and nonclamped
boundary conditions. Case 2 is concerned with a linear elasticity system with weakly imposed
symmetry under fully clamped conditions as this represents the hardest case. In Case 3 the full
Biot formulation of (3.16) is preconditioned using a preconditioner based on (4.2). As a final
numerical experiment, we consider in Case 4 system (3.16) with spatially varying c. The tests
are conducted using random right-hand sides and initial guesses. Convergence is reached when
the square root of the relative preconditioned residual, i.e., (B rk ,rk )

(B r0,r0)
, where rk is the residual at

the k-th iteration and B is the preconditioner, is below a given tolerance.

Case 1. In the first test case, we show the performance of the preconditioners for the weighted
H (div,Ω;M) inner product under nonclamped and clamped conditions. That is, for a given
right-hand side fh , we solve the problem: Find σh ∈Σh such that

(5.1) (Aσh ,τ)+ (divσh ,divτ) = ( fh ,τ) ∀τ ∈Σh .
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λ
N 4 8 16 32 64

10−4 3 2 2 2 2
10−2 3 2 2 2 2
100 6 6 5 5 4
102 13 12 11 9 8
104 13 13 11 10 8
106 13 12 11 9 8
108 12 12 11 10 7
1010 13 13 12 10 8
1012 12 13 11 10 8

(A) |Γt |> 0.

λ
N 4 8 16 32 64

10−4 3 2 2 2 2
10−2 3 3 2 2 2
100 6 6 5 5 4
102 11 11 10 8 7
104 9 10 10 8 7
106 9 8 9 8 7
108 7 7 7 7 7
1010 7 7 7 7 6
1012 7 7 8 8 3

(B) |Γt |= 0.

TABLE 1. Number of iterations for solving (5.1) using preconditioned conju-
gate gradient method with error tolerance 10−9.

We use piecewise linear, row-wise Brezzi-Douglas-Marini (BDM) elements, as described in
[4]. The linear system (5.1) is solved using the preconditioned conjugate gradient method
where the choice of preconditioner depends on the boundary conditions. In the case of |Γt |>
0, we use a geometric multigrid procedure with a domain decomposition smoother, c.f. [3].
Subsequently, this preconditioner will be referred to as the AFW preconditioner. When |Γt |=
0, we construct a preconditioner using (4.11) and the AFW preconditioner for D. The results
can be viewed in Table 1 where we see that the number of iterations remains bounded as N
and λ vary under both clamped and non-clamped boundary conditions.

Case 2. Before testing the preconditioner on the full Biot system, we present some numer-
ical tests on the reduced system of linear elasticity with weakly enforced symmetry. In our
notation, this system takes the following form:

For a given fh , find (σh , u h ,γh) ∈Σh ×V h × Γh so that

(Aσh ,τ)+ (u h ,divτ)+ (γh ,τ) = 0 ∀τ ∈Σh ,(5.2a)

(divσh , v) =− ( fh , v) ∀v ∈V h ,(5.2b)

(σh ,η) = 0 ∀η ∈ Γh .(5.2c)

For discretization, we can use any of the stable elements for mixed elasticity with weakly
enforced symmetry, see e.g., [4]. In particular, in these numerical experiments, we use the
same piecewise linear BDM elements for Σh as in Case 1, and piecewise constants for V h and
Γh . Additionally, we only consider fully clamped conditions in this case. The system (5.2) is
stable in the inner products in (3.6) for Σh , V h , and Γh , respectively. For preconditioning of
theΣh -block, we again use (4.11) together with the AFW preconditioner forD, and for the V h -
and Γh blocks we use the inverse of the diagonal elements of the corresponding mass matrices.
The numerical results can be seen in Table 2. N denotes the number of squares on one side as
before. Again, the number of iterations remains bounded both as N and λ increase.

Case 3. Considering the full Biot system with weakly imposed symmetry (3.16) with fully
clamped conditions, we discretize Σh , V h , and Γh using the same function spaces as in Case 2,
and Qh is the space of piecewise continuous linear functions over the triangulation of Ω. The
boundary conditions for the pressure are homogeneous Neumann conditions, i.e., |Γp | = 0,
and to remove the singularity, we fix the value of the pore pressure at a single point. The triple
(Σh ,V h ,Γh) is elasticity stable, which ensures the stability of Theorem 3.2, and consequently,
we can use a preconditioner based on (4.2). The actual preconditioner is then constructed
using geometrical multigrid with Jacobi smoother replacing the second block of (4.2) for the
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λ
N 4 8 16 32 64

10−4 18 19 19 19 19
10−2 18 19 19 19 19
100 28 28 28 28 28
102 38 41 40 41 42
104 35 36 40 41 43
106 28 31 36 40 43
108 22 24 31 38 38
1010 20 21 24 35 28

TABLE 2. Numerical result for mixed elasticity with weakly enforced symme-
try. Table shows the number of preconditioned minimal residual iterations
until reaching error tolerance 10−9.

N
c α λ 4 8 16 32 64

100

100
100 24 28 30 40 23
104 31 26 48 38 24
108 31 35 46 36 26

10−4
100 25 30 28 29 26
104 29 28 29 39 24
108 29 36 43 31 24

10−4

100
100 25 25 20 17 12
104 29 26 22 18 13
108 29 26 23 17 13

10−4
100 21 20 17 14 12
104 28 28 23 18 13
108 28 26 23 17 13

10−8

100
100 25 24 20 17 13
104 29 26 23 17 13
108 29 26 22 17 13

10−4
100 22 20 17 14 12
104 28 26 22 17 13
108 31 28 23 17 13

TABLE 3. Numerical results for preconditioning (3.16). Table shows the num-
ber of preconditioned minimal residual iterations until reaching error tolerance
10−9.

pore pressure, while the remaining blocks are treated as in Case 2. The results can be seen in
Table 3, where we see that robustness in N and λ continue to hold as well as for c and α.

Case 4. As the final experiment, we again consider (3.16), but now with hydraulic conductiv-
ity c= cI, where c is variable in Ω and defined by

(5.3) c(x, y) =
¨
c, if y ∈ (1/4,3/4)
1, otherwise.

The results can be seen in Table 4, where we again see robustness in all parameters.
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N
c α λ 4 8 16 32 64

100

100
100 19 22 30 20 19
104 28 31 36 28 20
108 26 31 24 23 20

10−4
100 21 24 31 25 19
104 26 31 34 23 19
108 28 31 36 28 19

10−4

100
100 22 25 25 28 17
104 27 31 33 26 16
108 25 31 22 28 16

10−4
100 21 23 29 25 19
104 28 31 32 19 17
108 26 25 24 25 17

10−8

100
100 22 24 30 19 17
104 25 31 34 28 16
108 27 30 34 28 17

10−4
100 21 22 30 19 19
104 27 31 33 19 19
108 28 31 31 19 17

TABLE 4. Numerical results for system (3.16) with variable c according to (5.3)
using preconditioner based on (4.2). Table shows the number of precondi-
tioned minimal residual iterations until reaching error tolerance 10−9.

6. CONCLUSIONS:

We have proposed a new variational formulation of Biot’s consolidation model based on
stress, displacement, and pressure, where the symmetry of the stress is imposed weakly. The
formulation is robustly bounded and stable in a set of parameter-dependent norms. This mo-
tivates two preconditioners of the system, depending on the type of boundary conditions
considered. We also show that the parameter-robust stability continues to hold when the elas-
ticity part is discretized with finite element spaces based on mixed linear elasticity with weakly
imposed symmetry, leaving a lot of freedom in the choice of discretization of the pressure.

The theoretical results in this work are backed up by a number of numerical experiments,
showing robustness in a wide range of values for the shear- and bulk elastic moduli, hydraulic
conductivity, as well as time- and space discretization parameters.

APPENDIX A. PROOFS OF (3.3) AND (3.5)

Finally, we provide proofs of (3.3) and (3.5).

Proof of (3.3). Fix τ ∈ Σ and recall that |Γt | > 0 and τ · ν = 0 on Γt . By the pointwise de-
composition τ = PDτ + (I − PD)τ, and the fact that (I − PD)τ =

1
n trτI, it suffices to show

that

‖trτ‖2
0 ≤C

��
1

2µ
PDτ, PDτ

�
+ ‖divτ‖2

0

�

for some constant C independent of τ. To prove this, we use a well-known result for the right
inverse of the divergence operator: There exists φ ∈ H 1

Γd
(Ω;V) :=

¦
ϕ ∈H 1(Ω;V) : ϕ|Γd = 0

©
such that

(A.1) divφ= trτ, ‖φ‖1 ≤C ‖trτ‖0
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with C > 0 independent of τ, cf. Appendix B. We then have that

‖trτ‖2
0 = (trτ, divφ) = (trτI,gradφ) .

Since trτI= n(τ− PDτ), we get

‖trτ‖2
0 = n (τ,gradφ)− n (PDτ,gradφ) =−n (divτ,φ)− n (PDτ,gradφ) ,

where the first term of the final form is a result of integration by parts. Next, we may use
Cauchy-Schwarz, which results in

‖trτ‖2
0 ≤ n (‖divτ‖0 ‖φ‖0+ ‖PDτ‖0 ‖gradφ‖0)

≤ n
�‖divτ‖2

0+ ‖PDτ‖2
0

� 1
2 ‖φ‖1

≤C
�‖divτ‖2

0+ ‖PDτ‖2
0

� 1
2 ‖trτ‖0 ,

and so the result follows after dividing by ‖trτ‖0. �

When |Γt |= 0, i.e. Γd = ∂ Ω, (A.1) can only hold if trτ has mean value zero. However, with
this constraint, we can prove (3.5) with almost the same argument as above.

Proof of (3.5). Fix any τ ∈Σ. From the decomposition P0τ = PDτ+(P0−PD)τ, it suffices to
prove the estimate for (P0− PD)τ component. Denoting the mean value of the trace by

trτ :=
1
|Ω|

∫
Ω

trτdx,

we have that (I − PD)P0τ = (P0− PD)τ =
1
n (trτ− trτ)I, and so it is sufficient to show that

‖trτ− trτ‖2
0 ≤C

��
1

2µ
PDτ, PDτ

�
+ ‖divτ‖2

0

�
.

Since trτ− trτ is mean-value zero, there exists φ ∈ {ϕ ∈H 1(Ω;V) : ϕ|∂ Ω = 0} such that

divφ= trτ− trτ, ‖φ‖1 ≤C ‖trτ− trτ‖0

with C > 0 independent of τ, (cf. [14, Theorem 5.1]). The rest of the proof is completely
analagous to the proof of (3.3) above. �

APPENDIX B. RIGHT INVERSE OF DIVERGENCE OPERATOR

A result for the right inverse of the divergence operator, as expressed by (A.1), is closely
related to the inf-sup condition for the Stokes problem, and therefore well-known. However,
we are not aware of a proper reference for the case when |∂ Ω|> |Γt |> 0, i.e. for the case when
|Γd |> 0, but Γd is not all of ∂ Ω. Therefore, for completeness, we include a proof here.

Lemma B.1. Assume |Γt | > 0 and set H 1
Γd
(Ω;V) =

¦
φ ∈H 1(Ω;V) : φ|Γd = 0

©
. Then there is a

constant C > 0 so that for every f ∈ L2(Ω) there is a φ ∈H 1
Γd
(Ω;V) so that

divφ= f , ‖φ‖1 ≤C ‖ f ‖0 .

Proof. Take any f ∈ L2(Ω). We first decompose f into its mean value zero- and mean value
part as f = f0 + fc where f0 ∈ L2

0(Ω) and fc = a f 1Ω for a f ∈ R. Further, we can decompose
H 1
Γd
(Ω;V) =H 1

0 (Ω;V)⊕V1, where

V1 :=
¦
φ ∈H 1

Γd
(Ω;V) : (gradφ,gradψ) = 0, ∀ψ ∈H 1

0 (Ω;V)
©

.

Consider then the problem of finding ζ ∈V1 so that

(B.1) (gradζ ,gradψ) = (I,gradψ) , ∀ψ ∈V1.
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By the Lax-Milgram lemma (cf. e.g., [8, Theorem 4.1.6]), problem (B.1) has a unique solution
ζ and ‖ζ ‖1 ≤C1 for some constant C1 > 0 depending on Ω. Taking ψ= ζ in (B.1), we obtain∫

Ω

divζ dx = ‖gradζ ‖2
0 .

Therefore, if we set ω =
a f

‖gradζ ‖20
ζ we have

∫
Ω

divωdx = a f and ‖ω‖1 ≤ C ‖ fc‖0 for some

constant C depending on ζ . It follows that f − divω ∈ L2
0(Ω), i.e., f − divω has mean value

zero. From the theory of Stokes equation, we can thus find aω0 ∈H 1
0 (Ω;V) so that

(B.2) divω0 = f − divω, ‖ω0‖1 ≤C2 ‖ f − divω‖0 ,

where the constant C2 is independent of f −divω (cf. [14, Theorem 5.1]). We setφ=ω0+ω,
and it follows from (B.2), that divφ= f . Using the triangle inequality, (B.2) and the properties
ofω we estimate ‖φ‖1 as

‖φ‖1 ≤ ‖ω0‖1+ ‖ω‖1 ≤C (‖ f − divω‖0+ ‖ fc‖0)≤C (‖ f ‖0+ ‖ω‖1)≤C ‖ f ‖0 ,

which completes the proof. �
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MULTIGRID METHODS FOR DISCRETE FRACTIONAL SOBOLEV SPACES

TRYGVE BÆRLAND†, MIROSLAV KUCHTA†, AND KENT-ANDRE MARDAL†

ABSTRACT. Coupled multiphysics problems often give rise to interface conditions naturally
formulated in fractional Sobolev spaces. Here, both positive and negative fractionality are com-
mon. When designing efficient solvers for discretizations of such problems it would then be
useful to have a preconditioner for the fractional Laplacian. In this work, we develop an addi-
tive multigrid preconditioner for the fractional Laplacian with positive fractionality, and show
a uniform bound on the condition number. For the case of negative fractionality, we re-use
the preconditioner developed for the positive fractionality and left-right multiply a regular
Laplacian with a preconditioner with positive fractionality to obtain the desired negative frac-
tionality. Implementational issues are outlined in details as the differences between the discrete
operators and their corresponding matrices must be addressed when realizing these algorithms
in code. We finish with some numerical experiments verifying the theoretical findings.

1. INTRODUCTION

Multiphysics or multiscale problems often involve coupling conditions at interfaces which
are manifolds of lower dimensions. The coupling conditions are, because of the lower dimen-
sionality, naturally posed in fractional Sobolev spaces, and this fact seemingly complicates
discretization schemes and solution algorithms. Our focus here will be on the development
of solution algorithms in terms of multilevel preconditioners that from an implementational
point of view only require minor adjustments of standard multilevel algorithms.

As simplified examples of problems involving interface conditions, let us consider the fol-
lowing two prototype problems. First an elliptic problem with a trace constraint

(1.1)
−∆u +T ∗λ= f , x ∈Ω,

T u = g , x ∈ Γ ,
and second an elliptic problem in mixed form with a trace constraint

(1.2)

u −∇p +T ∗λ= f , x ∈Ω,
∇ · u = g , x ∈Ω,

T u = h, x ∈ Γ .
Here, Γ is a sub-manifold either within Ω or at its boundary, T is a trace operator and T ∗ its
adjoint. Both problems are assumed to be equipped with suitable boundary conditions. We
remark that although these problems are single physics problems, they may easily be coupled
to other problems through the Lagrange multiplier at the interface. As such, the problems
represent well the challenge of handling the interface properly in a multiphysics setting.

We may write the above problems as

� −∆ T ∗
T 0

��
u
λ

�
=
�

f
g

�
and


 I −∇ T ∗
∇· 0 0
T 0 0




 u

p
λ


=


 f

g
h


 .
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A crucial challenge is to discretize and solve these problems in a scalable way such that the
computations scale linearly with the number of unknowns. Our approach here is to consider
iterative methods and develop preconditioners that are both spectrally equivalent with the
involved operators and of order-optimal complexity. The main difficulty is the handling of the
Lagrange multiplier which falls outside the scope of standard multilevel methods. To provide
a general framework, we will consider preconditioners constructed in terms of the so-called
operator preconditioning approach [32] to be used for iterative methods. As will be explained
later, the block diagonal preconditioners constructed by this technique will be of the following
form:

� −∆−1 0
0 (−∆) 1

2

�
and



(I −∇∇·)−1 0 0

0 I 0
0 0 (−∆)− 1

2


 ,

respectively. Multilevel methods spectrally equivalent with both (−∆)−1 and (I −∇∇·)−1 are
well known. The challenging part in both cases is the construction of efficient preconditioning
algorithms that approximate the inverse of the fractional Laplace problems on the form

(1.3) (−∆)s u = f , x ∈ Γ
with s = 1/2 and s = −1/2, equipped with suitable boundary conditions. Furthermore, if
Γ is of codimension 2, numerical simulations [26] indicate that s ∈ (−0.2,−0.1) gives rise to
efficient preconditioners. In this paper we therefore consider methods for s ∈ [−1,1].

There are many examples of applications of fractional Laplacians in the literature and we
mention a few that motivate this work. Non-overlapping domain decomposition precondi-
tioners are studied in [3], [25]. Here, they use (1.3) with s = 1

2 to precondition the interface
problem involving the related Steklov-Poincaré operator. In [27] the authors use (1.3) with
s = − 1

2 as part of a block diagonal preconditioner for multiphysics problem where the con-
straint coupling two domains of different topological dimension is enforced by the Lagrange
multiplier. Therein the fractionality s is dictated by the mapping properties of the Schur
complement operator. Some further examples of coupled systems with domains of different
dimensionality include Babuška’s problem for enforcing Dirichlet boundary conditions on
an elliptic operator [5], flow stabilization by removal of tangential velocity at the boundary
through Lagrange multipliers [8], the no-slip condition on the surface of a falling solid in
the Navier-Stokes fluid [17], inextensibility constraint in the complex model of vesicle forma-
tion [1], and the potential jump on a membrane of a cardiac cell [35]. We note that in these
applications the fractional Laplace problem has to be solved with both positive and negative
exponent.

There are several alternative approaches that have been used in order to approximate frac-
tional Laplacians. Polynomial approximations of As , where A is a discrete Laplacian, can be
computed with standard Krylov subspace methods. However, without any preconditioner
a Krylov subspace of large dimension is required for convergence, see e.g. Lanczos method
in [24, Section 4]. Preconditioners based on fractional powers of A on preconditioned prob-
lems on small subspaces have been shown efficient for various applications in [3, 38]. The
contour integral method of [19] and the extended Krylov method of [24] are here related to
rational function approximations of As , while [22] consider the best uniform rational aprox-
imations of the trasformed function A 7→ Aβ−s . In general, the approximation properties of
these methods depend on the condition number of A and thus computations of extremal eigen-
values are often part of the algorithm. Further, the computational complexity of the methods
based on rational approximations depends on efficient solvers for auxiliary linear systems, e.g.
(A− qk I )x = b in [22] where qk ∈R is a shift parameter. Almost mesh independent precon-
ditioners for systems arising in [19] and [24] are discussed in [16]. An alternative approach to
the matrix transfer method is presented in [9] where the inverse of the fractional Laplacian is
defined via the (integral) Balakrishnan formula [6].
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Multilevel methods for fractional Laplacians have been considered in [12, 22, 33, 34], but
there seems to be a significant untapped potential for advancement. Our work here is closely
related to [12], where order-optimal preconditioners for As when s ∈

�
− 3

2 , 3
2

�
were constructed

using a hierarchical basis approach. The paper did, however, only consider smoothers based
on level-dependent scaling and did not put much focus on the actual implementation. Here,
we will develop and analyze a multilevel algorithm that is straightforward to implement in a
standard multilevel software framework. In fact, the main change required is an adjustment
of the smoothers. To illustrate the change, let us assume that we want to solve the system
Ax = b, where A is a stiffness matrix corresponding to a discretized Laplacian. A standard
Jacobi algorithm can then be written

xn+1
i = xn

i −
1
Ai ,i

rn
i ,

where Ai ,i are the diagonal entries of the stiffness matrix for a discretized Laplacian, and rn is
the residual of the n’th iterate, xn . In our case, for Asx = b, the proposed Jacobi smoother
may be implemented as

xn+1
i = xn

i −
�

1
M1−s

i ,i As
i ,i

�
rn

i .

Here, Mi ,i are the diagonal entries of the mass matrix. We notice here that for s = 0 the action
is a Jacobi iteration on the mass matrix, and for s = 1 the action is a Jacobi iteration on the
stiffness matrix, and for 0< s < 1 the action is an interpolation between these two extremes.
From an implementational point of view, the restriction and interpolation operators used are
the same as those used in standard multilevel algorithms. However, from a theoretical point
of view, the fact that we use standard restriction and interpolation operators, means that the
multilevel approach will be non-nested. In fact, the matrices on coarser levels do not corre-
spond to (−∆)s -Galerkin projections of the matrix on the finer levels. We therefore employ
the framework of non-nested multilevel methods [15]. Furthermore, a multiplicative multi-
level algorithm would require computing the residual and hence the evaluation of the exact
(−∆)−s operator on every level. Since the evaluation of the exact (−∆)−s is a computationally
expensive procedure, we instead rely on the additive multilevel algorithm proposed in [14],
where the same residual is used on all levels. The additive variant is significantly less efficient
than corresponding multiplicative variants in terms of the conditioning (in the sense that the
conditioning depends on the number of levels). Still, this is a small price to pay (only loga-
rithmic in the number of unknowns) to avoid exact evaluation of the residual. In this paper
we will assume quasi-uniform mesh and continuous piecewise linear finite elements. This is
mainly for simplicity, and the results can be generalized to higher order discretizations, as well
as discontinuous Galerkin methods.

The paper is structured as follows. In section 2, we introduce notation, and some useful
operator inequalities related to fractional powers of positive operators. We also give a brief
discussion of fractional Sobolev spaces. Section 3 is devoted to the analysis of an abstract mul-
tilevel framework. In section 4 we use this framework to define operators that are spectrally
equivalent to the inverse of the fractional Laplacian when the fractionality s ≥ 0. We discuss
some strategies for preconditioning when s < 0 in section 5, and in section 6 we discuss im-
plementation of the preconditioners developed in the previous sections. Finally, we provide
numerical results that verify our theoretical result in section 7.

2. NOTATION AND PRELIMINARIES

Let Ω be a bounded, Lipschitz domain in Rn, with boundary ∂ Ω. We denote by L2(Ω)
the space of square integrable functions over Ω, with inner product (·, ·) and norm ‖·‖. For
k ∈N, we denote by H k(Ω) the usual Sobolev spaces of functions in L2(Ω)with all derivatives
up to order k in L2(Ω). The norm and inner product in H k is denoted by ‖ · ‖k and (·, ·)k ,
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respectively. The closure in H k of smooth functions with compact support in Ω is denoted as
H k

0 (Ω) and its dual space is H−k . In general a Hilbert space X is equipped with a norm ‖ · ‖X

and an inner product (·, ·)X and the dual space is denoted X ′
. For two Hilbert spaces X and

Y , we write L (X ,Y ) to mean the space of bounded linear operators T : X → Y , which we
equip with the usual operator norm

‖T ‖L (X ,Y ) = sup
x∈X

‖T x‖Y

‖x‖X

.

Let A be a symmetric positive-definite operator on a finite-dimensional Hilbert space X
with dimension N . Denote by {(λk ,φk)}Nk=1 the set of eigenpairs of A, normalized so that

(φk ,φl )X = δk ,l ,

where δk ,l is the Kronecker delta. Then φk , for k = 1, . . . ,N forms an orthonormal basis of
X , and if u ∈X has the representation u =

∑N
k=1 ckφk , then

Au =
N∑

k=1

λk ckφk .

For s ∈R, we define the fractional power As of A by

As u =
N∑

k=1

λs
k ckφk .

If A is only positive semi-definite, then we must restrict to s ≥ 0, and the eigenvectors corre-
sponding to the nullspace of A are left out (also for s = 0). If B is another symmetric positive
semi-definite operator on X , we write A≤ B if for every u ∈X

(Au, u)X ≤ (B u, u)X
holds. Note that 0≤A is equivalent to saying that A is positive semi-definite.

A result in operator theory is the Löwner-Heinz inequality, which states that if A≤ B , then

(2.1) As ≤ B s , s ∈ [0,1],

cf. for instance [23]. Inequality (2.1) means that the function x s with x ∈ [0,∞) is operator
monotone for s ∈ [0,1]. It follows that−(x)s is operator convex (cf. [20]), that is, for any two
symmetric positive semi-definite operators A and B on a Hilbert space X , the inequality

λAs +(1−λ)B s ≤ (λA+(1−λ)B)s
holds for every λ ∈ [0,1]. A key result regarding operator convex functions is the Jensen’s
operator inequality (cf. [21, Theorem 2.1]). The version we will use in the current work
states that for any K ∈N and s ∈ [0,1]

(2.2)
K∑

k=1

P ∗k As
k Pk ≤

�
K∑

k=1

P ∗k Ak Pk

�s

,

where for k = 1, . . . ,K , Ak are symmetric positive semi-definite operators on X , and Pk are
linear operators on X so that

∑K
k=1 P ∗k Pk ≤ I and I is the identity operator on X .

2.1. Fractional Sobolev spaces. We consider the interpolation spaces between H 1(Ω) and
L2(Ω) as defined in [30]. Let the inner product on H 1(Ω) be realized by the operator A := I−∆,
as

(u, v)1 = (Au, v) = (u, v)+ (∇u,∇v) , u, v ∈H 1(Ω).
A is unbounded as an operator mapping L2(Ω) to L2(Ω). However, A is well-defined on the set

D(A) =
�

u ∈ L2(Ω) : Au ∈ L2(Ω)
	

,
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which is a dense subspace of L2(Ω). On D(A), A is symmetric and positive-definite, and so the
fractional powers of A, Aθ for θ ∈R, are well-defined. Note that in the particular case θ= 1

2 ,



A

1
2 u



2
= (Au, u) = ‖u‖1 .

For s ∈ [0,1], we define the fractional Sobolev spaces as

(2.3) H s (Ω) =
¦

u ∈ L2(Ω) : A
s
2 u ∈ L2(Ω)

©
,

which is a Hilbert space with inner product given by

(u, v)s = (A
s u, v) , u, v ∈H s (Ω),

and we denote the corresponding norm by ‖·‖s .
We define H s

0 (Ω) to be the closure of C∞0 (Ω), the space of infinitely smooth functions with
compact support in Ω, in the norm of H s (Ω). We note that if s ≤ 1

2 , the spaces H s
0 (Ω) and

H s (Ω) coincide (cf. [30, Theorem 11.1]). For s ∈ [−1,0], we define a family of fractional
Sobolev spaces using the dual of H s

0 (Ω). That is,

H s (Ω) =
�
H−s

0 (Ω)
�′

.

Replacing H 1(Ω)with H 1
0 (Ω) and setting A=−∆ in the above construction, will again yield

the space H s
0 (Ω), with equivalent norm, for all s except when s = 1

2 . In this case, interpolation

between H 1
0 (Ω) and L2(Ω) results in a space that is strictly contained in H

1
2

0 (Ω). The subsequent
analysis is valid for both H s

0 (Ω) and H s (Ω).
We remark that the above defined fractional space H s (Ω) is equivalent to the fractional space

Ĥ s (Ω) defined in terms of the norm

‖u‖2
Ĥ s (Ω)

= ‖u‖2+
∫
Ω×Ω

|u(x)− u(y)|2
|x − y|n+2s

dxdy.

A detailed overview of the various definitions of fractional Sobolev norms and their discretiza-
tions can be found in [31].

2.2. Discrete fractional Sobolev spaces. We will now consider a discretization of the frac-
tional Sobolev spaces H s

0 (Ω) and H−s (Ω) for s ∈ [0,1]. Let Xh be a finite-dimensional subspace
of H 1

0 (Ω), with dimXh =Nh . We define the operator Ah : Xh →Xh by

(2.4) (Ah u, v) = (∇u,∇v) , u, v ∈Xh .

Using the fractional powers of Ah , we define for s ∈R the discrete fractional inner product on
Xh by

(u, v)s ,h =
�
As

h u, v
�
, u, v ∈Xh ,

and denoted the corresponding norm by ‖·‖s ,h . It is clear that for s = 0 and s = 1, the two
norms ‖·‖s ,h and ‖·‖s coincide on Xh . Therefore, due to [4, Lemma 2.3], the norms ‖·‖s ,h and
‖·‖s , when s ∈ [0,1], are equivalent on Xh , with constants of equivalence independent of Nh .

Let XH be a subspace of Xh , and AH : XH → XH be defined analogously to Ah in (2.4). If
IH : XH →Xh is the inclusion map, we see that

(2.5) AH = I ∗H Ah IH ,

where I ∗H is the adjoint of IH with respect to the L2 inner product.
We may also define As

H : XH → XH , but generally, As
H 6= I ∗H As

h IH . However, by Jensen’s
operator inequality we have the following.
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Lemma 2.1. For every s ∈ [0,1] we have

I ∗H As
h IH ≤As

H .

That is, for every u ∈XH ,

(2.6)
�
As

h u, u
�≤ (As

H u, u) .

Proof. For s = 0 and s = 1, (2.6) holds with equality, so let 0 < s < 1. We start by noticing
that since I ∗H IH is the identity on XH ,

A2
H = (I

∗
H IH AH I ∗H IH )

2 = I ∗H (IH AH I ∗H )
2IH .

By induction, we find that
Ak

H = I ∗H (IH AH I ∗H )
k IH

for every nonnegative integer k. It follows that for any polynomial p

(2.7) p(AH ) = I ∗H p (IH AH I ∗H ) IH .

Take now ε > 0. The spectra of both AH and IH AH I ∗H are contained in some bounded,
nonnegative interval [0, b ]. By Weierstrass’ approximation Theorem we can thus choose a
polynomial p so that

‖(IH AH I ∗H )
s − p(IH AH I ∗H )‖< ε, and ‖As

H − p(AH )‖< ε.
Using the triangle inequality and (2.7) we have that

‖As
H − I ∗H (IH AH I ∗H )

s IH‖ ≤ ‖As
H − p(AH )‖+ ‖I ∗H ((IH AH I ∗H )

s − p(IH AH I ∗H )) IH‖< 2ε,

and since ε was arbitrary, this shows that

(2.8) As
H = I ∗H (IH AH I ∗H )

s IH .

Using (2.5) in (2.8), we get that

(2.9) As
H = I ∗H (IH I ∗H Ah IH I ∗H )

s IH .

Finally, IH I ∗H defines a symmetric operator on Xh with L2 operator norm equal to 1. Since the
function x 7→ −x s is operator convex on [0,∞) we can use Jensen’s operator inequality (2.2)
in (2.9) to get

As
H ≥ I ∗H IH I ∗H As

h IH I ∗H IH

= I ∗H As
h IH ,

where we have used that I ∗H IH is the identity on XH . �

3. ABSTRACT MULTILEVEL THEORY

In order to analyze and implement a multigrid preconditioner for the fractional Laplacian
there are three main issues that need to be dealt with. First, we need to derive and implement
a smoother with the desired properties. As already mentioned in the introduction, this step
only requires a minor modification to standard smoothing algorithms. We will discuss the
details concerning implementation later. Second, the restriction/interpolation operators do
not result in a nested hierarchy of operators in our fractional setting as As

H 6= I ∗H As
h IH . For this

reason we will employ the framework for non-nested multilevel algorithms developed in [15].
Third, our main motivation for developing fractional multilevel solvers is their application to
multiphysics and multiscale problems where the preconditioner for the fractional Laplacian is
utilized at the interfaces. As such, the fractional Laplacian operator is not part of the original
problem and we may therefore not assume that this operator has been implemented. Fur-
thermore, implementing this operator in an efficient manner is a challenge, but is currently a
very active research field, c.f. e.g [31] for an overview. To avoid the application of the frac-
tional Laplacian on the various levels we employ additive multilevel schemes which enable the
residual of the problem to be used at all levels and remove the need for implementing a global
fractional Laplacian operator. That said, the theory developed here extends to multiplicative
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algorithms for problems involving the fractional Laplacian, such as the standard V-cycle. In
this section we will address the second and the third issues and outline a theory for an additive
multilevel scheme applied to an abstract non-nested problem. As such, the analysis of this
section is a synthesis of the papers [14] and [15].

Assume that we are given a nested sequence of finite-dimensional function spaces

V1 ⊂V2 ⊂ · · · ⊂VJ =V , J ≥ 2.

We further assume that V , and consequently all subspaces of V , is endowed with an inner
product (·, ·), with corresponding induced norm ‖·‖. Moreover, for each k = 1, . . . , J , we
assume that we are given a symmetric positive definite operator Ak : Vk → Vk , and we set
A=AJ . Note that we do not assume that the Ak operators are nested.

For the development and analysis of our multilevel algorithm, it will be useful to define a
number of operators on each level k. First, we define Pk ,k−1 : Vk →Vk−1 by

(3.1)
�
Ak−1Pk ,k−1v, w

�
= (Ak v, w) , ∀v ∈Vk , w ∈Vk−1.

We remark that in a nested setting, Pk ,k−1 is the A-projection, while since the Ak operators are
not nested, the Pk ,k−1 operators are not projections. Next, we define Qk : V →Vk by

(3.2) (Qk v, w) = (v, w) , ∀v ∈V , w ∈Vk .

It follows by the above definitions that

(3.3) Ak−1Pk ,k−1 =Qk−1Ak ,

and Ql Qk =QkQl =Ql whenever l ≤ k. For the sake of brevity, it will also be useful to define
Pk : V →Vk by Pk = Pk+1,k Pk+2,k+1 · · ·PJ ,J−1. Using the definition of P j+1, j for j = k , . . . , J −1
we see that

(Ak Pk v, w) = (Av, w) , ∀v ∈V , w ∈Vk .
Furthermore, applying (3.3) repeatedly, we find that

(3.4) Ak Pk =QkA.

Finally, suppose we are given for each k a smoother, which is a symmetric positive definite
operator Rk : Vk →Vk and in some sense should approximate A−1

k on Vk\Vk−1. We can now
define an additive multilevel operator B : V →V by

(3.5) B =
J∑

k=1

RkQk .

As remarked in [14], B can be viewed as an additive version of the standard multiplicative V-
cycle multigrid algorithm, where Rk plays the role of smoother. Because of this, it is reasonable
that the assumptions we need to make to establish spectral equivalence between A−1 and B are
similar to those made for standard multigrid algorithms.

We assume that for k = 2, . . . , J

(A.1) (Ak v, v)≤ �Ak−1v, v
�
, ∀v ∈Vk−1.

Under assumption (A.1) and the definition of Pk ,k−1 we see that for any v ∈Vk�
Ak−1Pk ,k−1v, Pk ,k−1v

�
=
�
Ak v, Pk ,k−1v

�

≤ �Ak Pk ,k−1v, Pk ,k−1v
� 1

2 (Ak v, v)
1
2

≤ �Ak−1Pk ,k−1v, Pk ,k−1v
� 1

2 (Ak v, v)
1
2 .

Thus, (A.1) implies

(3.6)
�
Ak−1Pk ,k−1v, Pk ,k−1v

�≤ (Ak v, v) , ∀v ∈Vk .

7



Conversely, assume (3.6). Then, for any v ∈Vk−1, by the definition of Pk ,k−1,

(Ak v, v) =
�
Ak−1Pk ,k−1v, v

�

≤ �Ak−1Pk ,k−1v, Pk ,k−1v
� 1

2
�
Ak−1v, v

� 1
2

≤ (Ak v, v)
1
2
�
Ak−1v, v

� 1
2 ,

which implies (A.1). Thus, (A.1) and (3.6) are equivalent. Notice that a similar inequality to
(3.6) would also hold for Pk , namely

(3.7) (Ak Pk v, Pk v)≤ (Av, v) , ∀v ∈V .

For the operators Rk , we assume there are constants C1,C2 > 0, independent of k so that

(A.2) C1
‖v‖2

λk

≤ (Rk v, v)≤C2

�
A−1

k v, v
�
, ∀v ∈Vk ,

where λk is the largest eigenvalue of Ak . Lastly, as is common in multigrid theory, we will
use an approximation assumption to establish spectral equivalence between B and A−1. In this
work, we assume the following approximation property: There is an α ∈ (0,1] and constant
C3 > 0, independent of k, so that

(A.3)
�
Ak(I − Pk ,k−1)v, v

�≤C α
3

�‖Ak v‖2

λk

�α
(Ak v, v)1−α , ∀v ∈Vk .

We are now in a position to state and prove the main theorem of this section. The proof
closely resemble the proofs of Corollary 3 and Theorem 2 in [14], but is extended to handle
the case of the non-nestedness of the operators.

Theorem 3.1. Assume that (A.1), (A.2), and (A.3) hold. Then, with B given in (3.5),

(3.8) C1C−1
3 J 1− 1

α (Av, v)≤ (BAv,Av)≤C2J (Av, v) .

holds for every v ∈V .

Proof. Fix v ∈V . Using the definition of B together with (3.4) we find that

(BAv,Av) =
J∑

k=1

(RkQkAv,QkAv) =
J∑

k=1

(RkAk Pk v,Ak Pk v) .

Thus, applying the second inequality of (A.2) and (3.7) gives

(BAv,Av)≤C2

J∑
k=1

(Ak Pk v, Pk v)≤C2J (Av, v) ,

which proves the second inequality of (3.8).
For the first inequality of (3.8) we write

v =
J∑

k=1

(Pk − Pk−1)v,

where we interpret P0 = 0 and PJ = I . By the definition of Pk , we have that Pk−1 = Pk ,k−1Pk ,
and so

v =
J∑

k=1

(I − Pk ,k−1)Pk v.

It follows that

(Av, v) =
J∑

k=1

�
Ak(I − Pk ,k−1)Pk v, Pk v

�
.
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Using (A.3) and (3.7), gives

(Av, v)≤C α
3

J∑
k=1

�
λ−1

k ‖Ak Pk v‖2�α (Ak Pk v, Pk v)1−α

≤C α
3 (Av, v)1−α

J∑
k=1

�
λ−1

k ‖Ak Pk v‖2�α .

The first inequality of (A.2) then implies that

(Av, v)≤ (C−1
1 C3)

α (Av, v)1−α
J∑

k=1

(RkAk Pk v,Ak Pk v)α

≤ (C−1
1 C3)

αJ 1−α (Av, v)1−α
� J∑

k=1

(RkAk Pk v,Ak Pk v)
�α

≤ (C−1
1 C3)

αJ 1−α (Av, v)1−α (BAv,Av)α ,

where the second step follows by Hölder’s inequality. The last step follows by the definition
of B in (3.5), and (3.4). Dividing by (C−1

1 C3)
α (Av, v)1−α J 1−α on both sides and raising to the

power 1
α gives the first inequality of (3.8). �

Remark 1. Analagously to what was done in [14], we can replace the regularity assumption
(A.3) with an assumption on the projections Qk (cf. also [13]). In particular, if instead of
(A.3), we assume that there is a constant C4 > 0, independent of k so that

(I −Qk−1)v



2 ≤C4λ
−1
k (Av, v) , ∀v ∈V ,

then we can use an argument like what was made in [14, Theorem 1 and Corollary 1] to show
that

(3.9) C−1
4 C1J−1 (Av, v)≤ (BAv,Av)≤C2J (Av, v)

for every v ∈V .

4. PRECONDITIONER FOR DISCRETE FRACTIONAL LAPLACIAN

In this section we use the abstract theory developed in Section 3 to derive an order optimal
preconditioner for the discrete fractional Laplacian As

h , described in Section 2, when s ∈ [0,1].
Let Ω be a bounded, polygonal domain inRn and suppose we are given a quasi-uniform tri-

angulation of Ω, denoted by Th , where h denotes the characteristic mesh size. We restrict our
discussion to the case when Vh is the space of continuous, piecewise linear functions relative
to the triangulation Th which vanish on ∂ Ω. To define a nested sequence of subspaces, we
suppose that Th is constructed by successive refinements. That is, we are given a sequence,

T1 ⊂ · · ·TJ =Th ,

of quasi-uniform triangulations, and Tk has characteristic mesh size hk for k = 1, . . . , J . In
the following, we will assume the bounded refinement hypothesis, that is, hk−1 ≤ γ hk for
k = 2, . . . , J , where γ ≥ 1 is a constant. In practice, γ is around 2. For each k we define Vk as
the space of continuous, piecewise linear functions relative to Tk that vanish on ∂ Ω. Further,
we define Ak : Vk →Vk by

(Ak v, w) = (∇v,∇w) , v, w ∈Vk .

We now fix s ∈ [0,1]. Since Ak is symmetric positive definite, we can define As
k and corre-

sponding norms
‖v‖2

s ,k :=
�
As

k v, v
�
, v ∈Vk .

Note that if s = 0 or s = 1, the norm ‖·‖s ,k coincides with the L2- and H 1
0 -norm, respectively.

That is, ‖·‖0,k = ‖·‖, and ‖·‖1,k = ‖·‖1.
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Analogous to the discussion in Section 3 we also define operators P s
k ,k−1 : Vk →Vk−1 by

(4.1)
�
As

k−1P s
k ,k−1v, w

�
=
�
As

k v, w
�
, ∀v ∈Vk , w ∈Vk−1.

Qk : VJ →Vk as the L2-projection, and P s
k := P s

k+1,k P s
k+2,k+1 · · ·P s

J ,J−1.
To complete the description of a multilevel preconditioner, we still need to define smoothers,

Rs
k , for each k and s . In this work, we will define additive smoothers based on domain decom-

position. To that end, letNk be the set of vertices in the triangulationTk , and for each ν ∈Nk ,
let Tk ,ν be the set of triangles meeting at the vertex ν. Then Tk ,ν forms a triangulation of a
small subdomain Ωk ,ν . We define Vk ,ν to be the subspace of functions in Vk with support con-
tained in Ω̄k ,ν . Analogously to what we did for Vk , we may define for each ν ∈ Nk operators
As

k ,ν : Vk ,ν→Vk ,ν , and Qk ,ν : Vk →Vk ,ν . For k = 2, . . . , J , we define

(4.2) Rs
k :=

∑
ν∈Nk

A−s
k ,νQk ,ν ,

while on the coarsest level we set Rs
1 = A−s

1 . We note that the smoothers are symmetric
positive-definite, and their inverse satisfy

(4.3)
�
(Rs

k)
−1v, v

�
= inf

v=
∑
ν vν

vν∈Vk ,ν

∑
ν∈Nk

�
As

k ,νvν , vν
�
, v ∈Vk .

With our particular choice of subspaces Vk ,ν , any v ∈ Vk can be uniquely decomposed into
v =

∑
ν∈Nk

vν , with vν ∈Vk ,ν . Moreover, it is well-known that this decomposition is L2-stable.
That is, there are constants K0,K1 > 0, independent of k and v so that

(4.4) K0 ‖v‖2 ≤∑
ν∈Nk

‖vν‖2 ≤K1 ‖v‖2 .

Our preconditioner now reads

(4.5) B s
h :=

J∑
k=1

Rs
kQk .

We want to apply Theorem 3.1 to the preconditioner defined by (4.5) and (4.2), so we need
to verify assumptions (A.1)-(A.3).

Using Lemma 2.1, we immediately find that for every k,�
As

k v, v
�≤ �As

k−1v, v
�
, ∀v ∈Vk−1,

which verifies (A.1) in the current context.
We present the verification of (A.2) in the following Lemma.

Lemma 4.1. For k = 1, . . . , J , let Rs
k : Vk → Vk be defined by (4.2). Then there are constants

C1,C2 > 0, so that for every k,

(4.6) C1
‖v‖2

λs
k

≤ �Rs
k v, v

�≤C2

�
A−s

k v, v
�
, ∀v ∈Vk ,

where λs
k is the largest eigenvalue of As

k .

Proof. It is evident that (4.6) holds on the coarsest level, i.e., for k = 1 (4.6) is satisfied with
C1 =C2 = 1. So let k ≥ 2, and fix v ∈Vk . For ν ∈Nk , let λs

k ,ν denote the largest eigenvalue of
As

k ,ν . To prove the first inequality in (4.6), we begin by noting that

λ1
k = sup

w∈Vk

�
A1

k w, w
�

(w, w)
≥ sup

w∈Vk ,ν

�
A1

k ,νw, w
�

(w, w)
= λ1

k ,ν .
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Thus, since λs
k = (λ

1
k)

s , we have that

(4.7) λs
k ≥ λs

k ,ν .

Let now v =
∑

ν∈Nk
vν be the unique decomposition of v into Vk ,ν for ν ∈Nk . Using (4.7) and

the second inequality of (4.4), together with the definition of Qk ,ν and Rs
k yields

(v, v)
λs

k

=
1
λs

k

∑
ν∈Nk

(v, vν)

=
1
λs

k

∑
ν∈Nk

�
Qk ,νv, vν

�

≤
 

1
λs

k

∑
ν∈Nk

�
Qk ,νv,Qk ,νv

�!
1
2
 

1
λs

k

∑
ν∈Nk

‖vν‖2

! 1
2

≤
 ∑
ν∈Nk

1
λs

k ,ν

�
Qk ,νv,Qk ,νv

�!
1
2
�

K1

λs
k

‖v‖2

� 1
2

≤
 ∑
ν∈Nk

�
A−s

k ,νQk ,νv,Qk ,νv
�! 1

2
�

K1

λs
k

‖v‖2

� 1
2

≤ �Rs
k v, v

� 1
2

�
K1

λs
k

‖v‖2

� 1
2

,

which proves the first inequality of (4.6) with C1 =K−1
1 .

For the second inequality, we begin by noting that for s = 1, it was proven in [37, Lemma
7.2] that there is a constant C , independent of k so that

�
R1

k v, v
�≤C

�
A−1

k v, v
�
, ∀v ∈Vk .

Since s ∈ [0,1], it follows by the Löwner-Heinz inequality (2.1) that

(4.8)
�
(R1

k)
s v, v

�≤C s �A−s
k v, v

�
, ∀v ∈Vk .

Thus, if we can show that

(4.9)
�
Rs

k v, v
�≤C

�
(R1

k)
s v, v

�
,

for some constant C , which is independent of k, then (4.8) together with (4.9) imply the second
inequality of (4.6).

We aim to prove (4.9) using Jensen’s operator inequality. To that end, we need to scale Rs
k ,

so that (2.2) is applicable. From the characterization of
�
R0

k

�−1 in (4.3) and the first inequality
of (4.4) we have that

K0 ‖v‖2 ≤
��

R0
k

�−1 v, v
�

,

which in turn implies that
∑
ν∈Nk

�
Qk ,νv,Qk ,νv

�
=
�
R0

k v, v
�≤K−1

0 ‖v‖2 .

If we now define Q̃k ,ν =K
1
2

0 Qk ,ν , and R̃s
k =K0Rs

k , we have that
∑
ν∈Nk

�
Q̃k ,νv, Q̃k ,νv

�
≤ ‖v‖2 and

�
R̃s

k v, v
�
=
∑
ν∈Nk

�
A−s

k ,νQ̃k ,νv, Q̃k ,νv
�

.
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We can now use Jensen’s operator inequality (2.2), together with an argument analogous to
that in the proof of Lemma 2.1 to get

Rs
k =K−1

0 R̃s
k

≤K−1
0 (R̃

1
k)

s

=K−(1−s)
0 (R1

k)
s

This, together with (4.8), proves the second inequality of (4.6) with C2 =K−(1−s)
0 C s . �

We observe that the proof of Lemma 4.1 shows that if the decomposition Vk =
∑

η∈Nk
Vk ,ν

is stable in both L2- and H 1
0 -norms, then it is also stable in the fractional norm ‖·‖s ,k . That is,

if there are constants c0, c1 > 0 so that�
As

k v, v
�≤ cs

�
(Rs

k)
−1v, v

�
, ∀v ∈Vk ,

with s = 0 and s = 1, then the same holds for every s ∈ [0,1], with cs = c1−s
0 c s

1 . In this way, the
smoother defined by (4.2) is the natural interpolation between the corresponding smoothers
for s = 0 and s = 1. As such, the results in Lemma 4.1 can be extended to more general
overlapping domain decompositions than the one we consider here.

As noted in [11, Remark 5.1] the α in the approximation and regularity assumption (A.3)
is closely related to the elliptic regularity of the continuous problem. Therefore, we make the
following assumption:

Assumption 4.1. There is an α′ ∈ (0,1] so that A is a bounded operator from H 1
0 (Ω)

⋂
H 1+α′(Ω)

to H−1+α′(Ω), and A−1 is a bounded operator from H−1+α′(Ω) to H 1
0 (Ω)

⋂
H 1+α′(Ω).

Assumption 4.1 is standard for proving condition (A.3) in the case of s = 1 (cf. for instance
[11]). In [9, Thm 4.3, and Rem. 4.1] Bonito et al. used Assumption 4.1 to prove the error
estimate 


(A−s −A−s

k Qk) f



≤C h2s

k ‖ f ‖ , ∀ f ∈ L2(Ω),

when α′ > s . By the triangle inequality and the bounded refinement hypothesis it then follows
that

(4.10)



(A−s

k −A−s
k−1Qk−1) f




≤C h2s
k ‖ f ‖ , ∀ f ∈Vk ,

for each k. This estimate is sufficient to verify (A.3) in our current context. The result is stated
in the following Lemma.

Lemma 4.2. Assume that Assumption 4.1 is satisfied with α′ > s . Then there is a constant C3 > 0,
so that for every k

(4.11)
�
As

k(I − P s
k ,k−1)v, v

�≤C3




As
k v



2

λs
k

.

Proof. From the definition of P s
k ,k−1 in (4.1),

I − P s
k ,k−1 = I −A−s

k−1Qk−1As
k = (A

−s
k −A−s

k−1Qk−1)A
s
k ,

and so, for any v ∈Vk�
As

k(I − P s
k ,k−1)v, v

�≤ �(A−s
k −A−s

k−1Qk−1)A
s
k v,As

k v
�

.

Using Cauchy-Schwarz inequality together with the error estimate (4.10), we get

(4.12)
�
As

k(I − P s
k ,k−1)v, v

�≤



(A−s

k −A−s
k−1Qk−1)A

s
k v





As

k v


≤C h2s

k



As
k v


2 .

By the quasi-uniformity of the mesh h2
k ≤ Cλ−1

k , and it follows that h2s
k ≤ Cλ−s

k . Using this
in (4.12) completes the proof. �
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We are finally in a position to prove the main theorem of this section.

Theorem 4.1. Let Assumption 4.1 be satisfied with α′ > s . Then, for s ∈ [0,1] with B s
h defined

by (4.2) and (4.5) satisfies

(4.13) C1C−1
3

�
As

h v, v
�≤ �B s

hAs
h v,As

h v
�≤C2J

�
As

h v, v
�
, ∀v ∈V ,

where C1, C2, and C3 are the same as in Lemmas 4.1 and 4.2.

Proof. This result is a straightforward application of Theorem 3.1 together with Lemmas 4.1
and 4.2. �

Theorem 4.1 shows that the condition number K(B s
hAs

h) ≤ C J , and so increases linearly
with the number of mesh levels, but is independent of h.

With less regularity of the domain, we can still prove a slightly weaker form of spectral
equivalence. By the assumed quasi-uniformity of Tk , we have for k = 2, . . . , J that

(I −Qk−1)v



2 ≤C h2
k ‖v‖2

1 , ∀v ∈Vk .

This, together with the boundedness of I −Qk−1 and interpolation theory, yields


(I −Qk−1)v



2 ≤C h2s
k ‖v‖2

s ,k ≤C4λ
−s
k ‖v‖2

s ,k ,

for some constant C4, independent of k. By the discussion in Remark 1, we get that

(4.14) C−1
4 C1J−1 �As

h v, v
�≤ �B s

hAs
h v,As

h v
�≤C2J

�
As

h v, v
�
, ∀v ∈Vh ,

and the condition number is bounded by K(B s
hAs

h)≤C J 2.

5. PRECONDITIONER WHEN s ∈ [−1,0]

For s ∈ [−1,0], the large eigenvalues of As
h correspond to smooth functions. In a multilevel

setting this means that neither relaxation nor coarse grid correction will reduce the oscillatory
components of the error. As a consequence, we cannot expect a direct multigrid approach to
work. Moreover, when s < 0 the Löwner-Heinz’ and Jensen’s operator inequalities in (2.1)
and (2.2) fail to hold, and the argument of Section 4 is no longer valid. In this section, we will
therefore investigate an alternative approach for constructing preconditioners.

We will base the preconditioner for As
h when s is negative on our previously defined pre-

conditioners B t
h for t ∈ [0,1] together with the multiplicative decomposition of Ah

(5.1) A−s
h =A−

1+s
2

h AhA−
1+s

2
h .

We have for every u ∈Vh and t ∈R that

‖u‖−s ,h =




A−

t+s
2

h u






t ,h
.

The specific form we will use below is

(5.2) ‖u‖− 1+s
2 +β,h =





A−
1+s

2
h u





 1+s
2 +β,h

,

which is valid for any β ∈R.
Replacing the left- and rightmost factor of the right hand side in (5.1) with a spectrally

equivalent preconditioner B
1+s

2
h , yields a symmetric positive definite operator

(5.3) B̃ s
h := B

1+s
2

h AhB
1+s

2
h .

We want B̃ s
h to be spectrally equivalent to A−s

h . That is, there exist constants C1,C2 so that
for every u ∈Vh ,

(5.4) C1

�
As

h u, u
�≤ �B̃ s

hAs
h u,As

h u
�
≤C2

�
As

h u, u
�

13



holds. By the definition of B̃ s
h ,

�
B̃ s

hAs
h u,As

h u
�
=
�

AhB
1+s

2
h As

h u,B
1+s

2
h As

h u
�
=




B

1+s
2

h As
h u






2

1
,

and since
�
As

h u, u
�
= ‖u‖2

s ,h , we see that the spectral equivalence in (5.4) is equivalent to

(5.5) C
1
2

1 ‖u‖s ,h ≤




B

1+s
2

h As
h u






1
≤C

1
2

2 ‖u‖s ,h , ∀u ∈Vh .

Using the preconditioner described in section 4, we have by the spectral equivalence estab-
lished in Theorem 4.1 that there are constants C1,C2 > 0 so that

(5.6) C1 ‖u‖− 1+s
2 ,h ≤





B
1+s

2
h u





 1+s
2 ,h
≤C2J ‖u‖− 1+s

2 ,h , u ∈Vh .

We assume now some additional regularity on B
1+s

2
h , similar to (5.2). That is, for some β,

we have the norm equivalence

(5.7) C1 ‖u‖− 1+s
2 +β,h ≤





B
1+s

2
h u





 1+s
2 +β,h

≤C2J ‖u‖− 1+s
2 +β,h .

In particular, with β = 1−s
2 ∈

�
1
2 , 1
�
, and replacing u by As

h u in (5.7) we recover (5.5) and
the spectral equivalence (5.4). We note also that if we assume the additional regularity of (5.7),
we can bound the condition number of B̃ s

hAs
h by

(5.8) K(B̃ s
hAs

h)≤K(B
1+s

2
h A

1+s
2

h )
2.

We remark that while (5.5) may be a non-trivial property to validate because Bh is a dis-
crete multigrid operator, similar conditions on the continuous differential operator are well-
established. That is, for (−∆)−s : H−s →H s the regularity conditions that enable a decompo-
sition (−∆)−s = (−∆)−(s+t )(−∆)t such that

‖(−∆)−s‖L (H−s ,H s ) ≤ ‖(−∆)−(s+t )‖L (H−s+t ,H s )‖(−∆)−s‖L (H−s ,H−s+t )

are well described, c.f. [31]. As such the regularity assumption (5.5) is a reasonable condition
in the continuous setting, but the discrete setting is unclear.

6. IMPLEMENTATIONAL CONCERNS

The discrete operators discussed so far are related to, but are not the same as the matrices
used in the implementation. In this section we will discuss how to implement these operators.
We begin by discussing the matrix representation of the discrete fractional operators. We refer
also to [32] for more details. While the discrete fractional operators satisify the group property
As

hAt
h = As+t

h , their matrix representations do not. In particular, for t = −s , As
hA−s

h = Ih and
the finite element matrix representation of the identity is the mass matrix. Hence, in order to
provide a precise description of the interpolation of the involved matrices, we let

�
φi

h

	Nh

i=1
be

the standard nodal basis for Vh , and we introduce the operatorsπh ,µh : Vh →RNh , defined by

(6.1)
v =

Nh∑
i=1

(πh v)i φ
i
h , and

(µh v)i =
�
v,φi

h

�
, i = 1, . . . ,Nh .

Subsequently, we will refer to πh v and µh v as the primal and dual vector representation of
v, respectively. The primal representation is sometimes called the nodal representation. We
then have that

(6.2) µ∗h =π
−1
h , and π∗h =µ

−1
h

14



To see this, take v ∈RNh , and u ∈Vh . Then,�
µ∗hv, u

�
= (v,µh u)l 2

=
Nh∑
i=1

vi

�
u,φi

h

�

=
�

u,
Nh∑
i=1

viφ
i
h

�

=
�
u,π−1

h v
�
,

where (·, ·)l 2 is the standard Euclidean inner product on RNh . This proves the first identity in
(6.2). The second identity is proven similarly.

Using these operators, the stiffness matrix can then be expressed as

Ah =µhAhπ
−1
h , and (Ah)i , j = (Ahφ

j
h ,φi

h), 1≤ i , j ≤Nh ,

and the mass matrix is

Mh =µh Ihπ
−1
h =µhπ

−1
h , and (Mh)i , j = (φ

j
h ,φi

h), 1≤ i , j ≤Nh .

We see that for both the stiffness- and mass matrix, a matrix-vector product takes primal vec-
tors as input and returns dual vectors.

For the matrix realization of As
h , let {(λi ,ui )}Nh

i=1 ⊂ R×RNh be the eigenpairs of the gener-
alized eigenvalue problem

Ahui = λiMhui ,

normalized so that u>j Mhui = δi , j . Setting ˜h = diag(λ1, . . . ,λNh
), and U = [u1, . . . ,uNh

], we
have that

(6.3) U>MhU= I, and U>AhU= ˜h .

We then define

(6.4) As
h = (MhU)˜

s
h (MhU)

> .

One can verify that the entries of As
h satisfy

(As
h)i , j =

�
As

hφ
j
h ,φi

h

�
,

in which case As
h =µhAs

hπ
−1
h . Using (6.3) we are also able to see that

(6.5) (As
h)
−1 = U˜−s

h U> =πhA−s
h µ

−1
h ,

making it the matrix realization of As
h viewed as an operator from Xh to X ′

h . However, the
group properties mentioned above only make sense when we consider As

h as operators on Xh .
Thus, we see that for the matrices

πhAs
hπ
−1
h = (πhµ

−1
h )µhAs

hπ
−1
h =M−1

h As
h ,

the group properties are satisfied. This can also be verified using the definition of As
h in (6.4).

Since matrix-vector products involving As
h take primal vectors as input and return dual vec-

tors, the matrix realization of B s
h should take dual vectors as input and return primal vectors.

Then the product Bs
hA

s
h acts on primal vectors, and is thus suitable for a Krylov subspace

method. See also [32, Section 6] and [10, Section 15]. Therefore, we define

(6.6) Bs
h =πhB s

hµ
−1
h .

To see how Bs
h is implemented, we begin by supposing that dimVk = Nk for k = 1, . . . , J .

Let
�
φi

k

	Nk

i=1
be bases for Vk , and we define operators πk ,µk : Vk →RNk analogously to (6.1).
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We then define mass and stiffness matrices on level k as Mk = µkπ
−1
k and Ak = µkAkπ

−1
k ,

respectively.
By assumption, for every k, Vk ⊂Vh , and so there are matrices Ik :RNk →RNh so that

φi
k =

Nh∑
j=1

(Ik)i , jφ
j
h , i = 1, . . . ,Nk .

In fact, Ik is the matrix realization of the inclusion operator Ik : Vk → Vh , i.e. Ik = πh Ikπ
−1
k .

Using that Qk = I ∗k and (6.2) we have that the transpose of Ik satisfies

I>k =
�
πh Ikπ

−1
k

�∗
= (π−1

k )
∗Qkπ

∗
h

=µkQkµ
−1
h

=: Qk ,

which is the matrix realization of Qk in dual representation. Thus, for the matrix Bs
h we have

that

(6.7)

Bs
h =πhB s

hµ
−1
h

=
J∑

k=1

πh Ik Rs
kQkµ

−1
h

=
J∑

k=1

(πh Ikπ
−1
k )(πk Rs

kµ
−1
k )(µkQkµ

−1
h )

=
J∑

k=1

Q>k R
s
kQk ,

where we define Rs
k = πk Rs

kµ
−1
k as the matrix realization of Rs

k . We see that due to (6.5)
Rs

1 = (A
s
1)
−1. For k ≥ 2 we define for ν ∈Nk operators πk ,ν ,µk ,ν : Vk ,ν→RdimVk ,ν and matrices

Qk ,ν :RNk →RdimVk ,ν , similarly to the above. The matrix realization of Rs
k then becomes

(6.8) Rs
k =

∑
ν∈Nk

Q>k ,ν(A
s
k ,ν)
−1Qk ,ν .

Here, As
k ,ν =µk ,νA

s
k ,νπ

−1
k ,ν . By (6.5), the implementation of Rs

k will require solving many small
eigenvalue problems. In the particular case of continuous, piecewise linear finite element func-
tions, and subdomains Ωk ,ν as described in Section 4, the subspaces Vk ,ν are one-dimensional.
The matrix Rs

k is then diagonal, with entries

(Rs
k)i ,i =

1
(Mk)

1−s
i ,i (Ak)si ,i

, i = 1, . . . ,Nk .

That is, this is the smoother mentioned in the introduction.
Inserting (6.8) into (6.7) we get

(6.9) Bs
h =Q>1 (A

s
1)
−1Q1+

J∑
k=2

Q>k

 ∑
ν∈Nk

Q>k ,ν(A
s
k ,ν)
−1Qk ,ν

!
Qk .
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We end this section by showing how to implement B̃ s
h , when s ∈ [−1,0]. In this case, the

matrix realization of B̃ s
h can be found from B

1+s
2

h and Ah by

(6.10)

~Bs
h :=πh B̃ s

hµ
−1
h

= (πhB
1+s

2
h µ−1

h )(µhAhπ
−1
h )(πhB

1+s
2

h µ−1
h )

= B
1+s

2
h AhB

1+s
2

h .

That is, B̃ s
h is implemented as an application of B

1+s
2

h , followed by a multiplication of the stiff-

ness matrix and a second application of B
1+s

2
h .

7. NUMERICAL EXPERIMENTS

In this section we present a series of numerical experiments that aim to validate the theoret-
ical results we established in previous sections. We also present numerical results for the case
when s < 0, using B̃ s

h , defined in (5.3), as preconditioner. Specifically, in section 7.1 we solve

As
h u = f ,

using preconditioned conjugate gradient method with B s
h defined in (4.5) as preconditioner.

Here, the main motivation is to validate the h-independence of K(B s
hAs

h) implied by Theorem
4.1. In section 7.2, we consider a coupled multidomain problem, where the weakly imposed
continuity on the interface leads to a Lagrange multiplier in H± 1

2 .
The numerical experiments are conducted using random initial guess. Convergence in the

iterative methods used is reached when the relative preconditioned residual, i.e. (B rk ,rk )
(B r0,r0)

, where
rk is the residual at the k’th iteration and B is the preconditioner, is below a given tolerance.

7.1. Preconditioning the fractional Laplacian. In the first set of numerical experiments, we
show the performance of the preconditioners B s

h and B̃ s
h , defined in (4.5) and (5.3), respectively,

depending on the sign of s for the As
h inner product. That is, for a given fh ∈ Vh , we solve:

Find uh ∈Vh such that

(7.1)
�
As

h uh , v
�
= ( fh , v) , ∀v ∈Vh ,

where s ∈ [−1,1]. We take Ω = [0,1] ⊂ R, and Th is a uniform partition of Ω consisting of
N = 1

h elements. Vh is then the space of continuous, piecewise linear functions relative to Th
that vanish on ∂ Ω. The matrix representation of As

h we use here is provided by (6.4). This
matrix is in general dense, and so matrix-vector multiplication will take O (N 2) operations. As
such, the preconditioned iterative method will not be computationally optimal, but we stress
that these experiments are designed only to validate the bounds on K(B s

hAs
h).

We solve the linear system arising from (7.1) using preconditioned conjugate gradient, with
B s

h as preconditioner if s ≥ 0, and B̃ s
h if s < 0. For s ≥ 0, iteration counts and estimated

condition numbers can be viewed in Table 1. From these results we see that both the iteration
counts and condition numbers stay uniformly bounded for each s .

The analogous results for s ≤ 0 can be seen in Table 2. Here the situation is slightly more
complicated. For each s , the iteration counts and condition numbers seem to increase for small
N (large h), but ultimately stay bounded when N is increased. Worth noting is that the bound
(5.8) is relatively sharp. For instance, for s =−1, the preconditioner B̃ s

h does two applications
of B0

h , and has estimated condition numbers around 193. By Table 1, K(B0
hA0

h)≈ 13.8, and so
K(B̃−1A−1

h )≈K(B0
hA0

h)
2. Similar relations holds for other values of s ≤ 0.
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s
N 32 64 128 256 512

0.0 20(13.5) 25(13.6) 28(13.8) 29(13.8) 29(13.9)
0.1 18(8.7) 21(8.9) 23(8.9) 24(8.9) 24(8.9)
0.2 16(5.8) 18(6.4) 19(6.5) 21(6.5) 21(6.6)
0.3 14(4.2) 15(4.7) 17(4.9) 18(5.0) 18(5.0)
0.4 12(3.4) 14(3.7) 15(3.8) 15(3.9) 16(3.9)
0.5 11(2.9) 12(3.0) 13(3.1) 13(3.1) 14(3.2)
0.6 12(2.9) 13(3.0) 13(3.0) 14(3.1) 14(3.0)
0.7 12(3.0) 13(3.0) 14(3.1) 14(3.1) 14(3.1)
0.8 13(3.2) 14(3.3) 14(3.3) 14(3.3) 14(3.3)
0.9 14(3.5) 15(3.6) 15(3.6) 15(3.6) 15(3.6)
1.0 14(4.0) 16(4.1) 16(4.1) 16(4.1) 16(4.1)

TABLE 1. Numerical results for (−∆)s with nonnegative s . Table shows the
number of preconditioned conjugate gradient iterations until reaching error
tolerance 10−15. Estimated condition numbers are shown inside parentheses.
N is number of elements on the finest mesh. J = 5 in all tests.

s
N 32 64 128 256 512

−1.0 32(184.4) 47(192.4) 56(192.7) 64(193.8) 62(191.2)
−0.9 28(119.0) 43(118.9) 50(120.5) 54(120.7) 55(119.9)
−0.8 26(78.3) 37(82.6) 46(84.5) 48(83.8) 49(83.9)
−0.7 25(53.0) 33(60.1) 40(61.9) 42(62.1) 45(61.5)
−0.6 24(36.9) 31(43.8) 35(45.8) 38(46.2) 41(46.2)
−0.5 22(26.8) 25(31.9) 30(34.3) 34(34.9) 38(35.1)
−0.4 20(20.4) 24(24.8) 28(26.5) 32(27.0) 37(27.1)
−0.3 17(16.1) 21(19.3) 27(20.7) 30(21.1) 34(21.1)
−0.2 17(13.1) 21(15.3) 25(16.4) 29(16.7) 32(16.7)
−0.1 16(11.0) 20(12.4) 23(13.2) 27(13.5) 29(13.5)
0.0 14(9.4) 17(10.4) 20(11.0) 24(11.2) 27(11.1)

TABLE 2. Numerical results for (−∆)s with negative s . Table shows the num-
ber of preconditioned conjugate gradient iterations until reaching error toler-
ance 10−15. Estimated condition numbers are shown inside parentheses. N is
number of elements on the finest mesh. J = 5 in all tests.

7.2. Multidomain preconditioning. In this section we apply the multilevel algorithm (4.5)
to construct mesh independent preconditioners for a coupled multidomain problem origi-
nating from a geometrically accurate model of electric signal propagation in cardiac tissue,
the EMI model, [35].We remark that the EMI model is simple in a sense that it is a single-
physics problem where two elliptic equations are coupled. However, the interface problems
encountered here are identical to those found in multiphysics applications, e.g. the coupled
Darcy-Stokes system [29] or the Stokes-Biot system [2].

Let Ω ⊂ R2 be a bounded domain decomposed into two non-overlapping subdomains Ω1,
Ω2 with a common interface Γ = ∂ Ω1

⋂
∂ Ω2 forming a closed curve. Motivated by the appli-

cation the subdomain Ω1 is designated as the exterior domain, i.e. ∂ Ω2

⋂
∂ Ω= ;. With ε > 0
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and n the outer normal of the exterior domain we now aim to solve

(7.2)

u1−∆u1 = f1, x ∈Ω1,

u2−∆u2 = f2, x ∈Ω2,
n · ∇u1− n · ∇u2 = 0, x ∈ Γ ,

ε(u1− u2)+ n · ∇u1 = g , x ∈ Γ .
The choice of boundary conditions for (7.2) shall be discussed shortly. We remark that in the
EMI model the parameter ε plays a role of inverse time step and thus algorithms robust with
respect to the parameter are of interest. However, here the system will be considered only for
a fixed choice of the parameter.

Considering (7.2) with homogeneous Neumann boundary conditions n · ∇u1 = 0 on ∂ Ω
and letting W1 = H 1(Ω1)×H 1(Ω2)× (H−1/2(Γ )

⋂
ε−1/2L2(Γ )) the variational formulation of

(7.2) defines an operatorA1 : W1→W ′
1

(7.3) A1 =


I −∆ 0 T ∗1

0 I −∆ −T ∗2
T1 −T2 −ε−1I


 ,

where Ti , Ti v = v |Γ for v ∈ C (Ω̄i ), i = 1,2 are the trace operators on H 1(Ω1) and H 1(Ω2),
respectively. Tveito et al. [35] further discuss a mixed formulation of the system (7.2) where
additional unknownsσi =−∇ui , i = 1,2 are introduced. If homogeneous Dirichlet boundary
conditions u1 = 0 on ∂ Ω are assumed the mixed formulation leads to operatorA2 : W2→W ′

2

(7.4) A2 =


 I ∇ T ∗
−∇· −I 0

T 0 −εI


 ,

with W2 =H (div,Ω)× L2(Ω)× (H 1/2(Γ )
⋂
ε1/2L2(Γ )) and T the normal trace operator T σ =

σ |Γ ·n for v ∈ [C (Ω)]2. We remark that operatorsA1 andA2 also arise naturally in the analysis
of non-overlapping domain decomposition methods for second order elliptic problems in the
primal [36] and mixed formulation [18] respectively.

Assuming that the operatorsA1 andA2 are isomorphisms on their respective spaces1 the
preconditioners can be established within the framework of operator preconditioning [32].
In particular, the Riesz map preconditioner for (7.3) is

(7.5) B1 =




I −∆
I −∆

ε−1I +(−∆+ I )−1/2



−1

,

while (7.4) will be preconditioned by

(7.6) B2 =




I −∇∇·
I
εI +(−∆+ I )1/2



−1

.

Note that the operator sums inB1,B2 are due to the fact that the interface spaces are inter-
section spaces [7].

In order to simplify the setting and focus only on the fractional operators in the precondi-
tioners we remove the parameter dependence from the problems by settting ε =∞ in (7.3),
(7.5) and similarly ε = 0 for (7.4), (7.6). In turn, the interface spaces reduce to H−1/2(Γ ) and
H 1/2(Γ ) respectively and the multilevel algorithm is directly applicable to the related interface

1The proof of this result as well as stable finite element discretization of the problem are subject of current
work and will be reported elsewhere. We remark that operatorA1 in the limit case ε =∞ has been studied in
[28] in the context of mortar finite element method.
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h dimWh #cellsΓ
#MG #EigJ = 2 J = 3 J = 4

2.21E-02 4481 128 67 93 103 36
1.10E-02 17153 256 68 92 111 35
5.52E-03 67073 512 66 90 112 35
2.76E-03 265217 1024 64 90 112 34
1.38E-03 1054721 2048 64 88 108 33

TABLE 3. Number of MinRes itarations for the operator B1A1 and ε = 1015

using multilevel algorithm with J levels as a preconditioner for (−∆+ I )−1/2.
Realizing the fractional operator with spectral decomposition leads to iteration
counts in the last column.

problems which now involve the operator I −∆, cf. the Laplacian operator in the previous
sections.

Robustness ofB1,B2, and in particular the fractional Sobolev space preconditioner, are fi-
nally demonstrated by observing the iteration counts of the preconditioned MinRes method.
In the experiments we let Ω= [0,1]2 and Ω2 = [0.25,0.75]2. The finite element discretization
of W1 uses continuous linear Lagrange elements(P1). For W2 two different discretizations are
considered; BDM1-P0-P1 or RT1-P0-P0. That is, the the first subspace of W2 is constructed from
linear Brezzi-Douglas-Marini element(BDM1) or the lowest order Raviart-Thomas element(RT1),
while the the remaining subspaces use piecewise constant and piecewise linear Lagrange ele-
ments, respectively. Let us note that with RT1-P0-P0 element the discretization is non-conforming
owing to the piecewise constant space for the multiplier. Moreover, the fractional multigrid
algorithm is then applied outside of the setting used in the analysis of Section 4. We remark
that in this case the multigrid preconditioner uses the discrete operator

(Ah u, w) = (u, w)+
∑
ν∈N
{{h}}−1

ν [[u]]ν[[w]]ν , u, w ∈Vh .

Here N is a set of all the vertices of the mesh and {{u}}ν = 1
2 (u|K+ + u|K−), [[u]]ν = u|K+ −

u|K− are the average and the jump values computed from the two2 cells K± connected to the
vertex ν. Moreover, dimVk ,ν = 2 so that the eigenvalue problems needed to be solved by the
smoother 4.2 use 2 by 2 matrices. Compare this to the case of one-dimensional problems due
to continuous, piecewise linear elements in section 6.

The discrete preconditioners shall use off-the-shelf methods for the first two blocks. More
specifically, a single V cycle of algebraic multigrid is used forB1 while forB2 the action is
computed exactly by a direct solver. The final block of the preconditioners is realized by the
proposed multilevel preconditioner with different number of levels J = 2,3,4.

The number of MinRes iterations is shown in Table 3 and Table 4. Here, the iterations were
started from a random initial vector and terminated once the relative preconditioned residual
norm was less then 10−8 in magnitude. For bothB1 andB2 the iterations are bounded in the
discretization parameter. The tables further list iteration counts for preconditioners where
the fractional operators were realized in terms of spectral decomposition. As expected from
the theory and experiments for the Laplace problem the difference in iteration counts between
the multilevel realization and specral realization is larger forB1 then it is forB2.

2Recall that the interface Γ is here taken as a simple closed curve.
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h #cellsΓ
BDM1-P0-P1 RT1-P0-P0

dimWh
#MG #Eig dimWh

#MG #EigJ = 2 J = 3 J = 4 J = 2 J = 3 J = 4
2.21E-02 128 33152 25 27 28 22 20736 27 28 27 22
1.10E-02 256 131840 25 27 29 22 82432 27 32 32 22
5.52E-03 512 525824 23 27 27 22 328704 27 33 36 22
2.76E-03 1024 2100224 22 27 29 22 1312768 27 33 40 22
1.38E-03 2048 8394752 22 25 29 22 5246976 25 35 40 22

TABLE 4. Number of MinRes itarations for the operator B2A2 and ε = 10−15

using multilevel algorithm with J levels as a preconditioner for (−∆+ I )1/2.
Two different finite element discretizations are considered. Realizing the frac-
tional operator with spectral decomposition leads to iteration counts in the
#Eig column.
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[38] Q. Yang, I. Turner, F. Liu, and M. Ilić. Novel numerical methods for solving the time-
space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput., 33(3):1159–
1180, 2011.

23



78



Paper III

An Auxiliary Space Preconditioner for Fractional Laplacian of Negative
Order

T. BÆRLAND

In preparation.

79





AN AUXILIARY SPACE PRECONDITIONER FOR FRACTIONAL LAPLACIAN
OF NEGATIVE ORDER

TRYGVE BÆRLAND†

ABSTRACT. Coupled multiphysics problems often give rise to interface conditions naturally
formulated in fractional Sobolev spaces. Here, both positive and negative fractionality are com-
mon. When designing efficient solvers for discretizations of such problems it would then be
useful to have a preconditioner for the fractional Laplacian, (−∆)s , with s ∈ [−1,1]. Previ-
ously, additive multigrid preconditioners for the case when s ≥ 0 have been proposed. In this
work we complement this construction with auxiliary space preconditioners suitable when
s ≤ 0. These preconditioners are shown to be spectrally equivalent to (−∆)−s , but requires
preconditioners for fractional H (div ) operators with positive fractionality. We design such op-
erators based on an additive multigrid approach. We finish with some numerical experiments,
verifying the theoretical results.

1. INTRODUCTION

In this paper we are concerned with the design and analysis of preconditioners for the
fractional Laplacian with negative exponent. More specifically, let Ω ⊂ Rn be a bounded
n-dimensional domain, and s ∈ [0,1] a parameter. We then consider the problem of finding
u satisfying

(1.1) (−∆)−s u = f ,

where f is given. Here, H 1
0 (Ω) denotes the usual Sobolev space of square-integrable func-

tions with square-integrable first order derivatives and zero trace on the boundary of Ω, and
H−1(Ω) denotes its dual space. Then (−∆)−s is defined from the spectral decomposition of
(−∆) : H 1

0 (Ω) → H−1(Ω). Our aim in this work is to design efficient preconditioners for
discretizations of (−∆)−s .

Due to the negative exponent, common preconditioning strategies will fail in this context.
In particular, for positive s , (−∆)s behaves similarly to −∆ in that the eigenfunctions corre-
sponding to high eigenvalues are oscillatory, and vice versa. As such, the error from simple it-
eration schemes, like Richardson’s iteration, are relatively smooth and can be well-represented
on a coarser function space. This observation suggests that multigrid operators can provide
efficient preconditioners for (−∆)s , and motivated the construction of additive multigrid pre-
conditioners in [5]. However, in our current context the roles are reversed. The oscillatory
eigenfunctions of (−∆)−s correspond to the lower end of the spectrum. Then, neither sim-
ple smoothing procedures nor coarse grid correction will eliminate the oscillatory part of the
error, and therefore we cannot hope for a straightforward multigrid method to work.

The preconditioners proposed in this work will be based on the auxiliary space precondi-
tioner framework, [32]. Of particular note is that the transfer operator, whose role is to relate
the original space and the auxiliary space, will be a differential operator. Consequently, the
preconditioner on the auxiliary space will have to be spectrally equivalent to the inverse of
a differential operator raised to a positive, fractional power. To motivate this, let H s

0 (Ω) de-
note the spectral interpolation (see [27, Ch. 2]) between L2(Ω) and H 1

0 (Ω), and H−s (Ω) the
dual space of H s

0 (Ω). Then (−∆)−s is an isomorphism from H−s (Ω) to H s
0 (Ω). Following the

†DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, BLINDERN, OSLO, 0316 NORWAY
E-mail address: trygveba@math.uio.no.
The research leading to these results has received funding the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 339643.
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operator preconditioning framework in [28], an efficient preconditioner for (1.1) should be
based on a linear, symmetric isomorphism B s : H s

0 (Ω)→ H−s (Ω), the canonical choice being
the Riesz mapping (−∆)s . Consequently, the preconditioner should behave like a differential
operator raised to a positive, fractional power. Then, roughly speaking, if B s consists of ap-
plications of any standard differential operator, a correction is needed to compensate for this
overshoot in fractionality. This correction will then behave like the inverse of a fractional
differential operator of positive order. In particular, we will see that B s = −div Λ−(1−s)∇ is
spectrally equivalent to (−∆)s . Here, Λ= I −∇div is the operator realizing the H (div ) inner
product. Thus, the problem of preconditioning (−∆)−s will be transferred to the problem of
preconditioning Λ1−s , which is amenable to an analysis similar to the one made in [5]. This is
an attractive idea because, as we will see, Λ1−s behaves similarly to Λ, where preconditioning
strategies based on multilevel decompositions have proved efficient, [2, 3, 20, 21, 23, 26].

Preconditioners, and in particular preconditioners based on multilevel decompositions, for
(1.1) have previously been studied. For s = 1

2 , Bramble et al. designed a V-cycle multigrid op-
erator in [11]. Their construction was based on posing (1.1) in the weaker H−1 inner product,
where the operator they considered had spectral properties suitable for multigrid analysis. In
[17], similar ideas were used to construct and analyze an additive multigrid operator. Hier-
archical basis preconditioners, suitable for (1.1) when s ∈

�
− 3

2 , 3
2

�
were constructed in [29].

These preconditioners were based on an L2-orthogonal decomposition into each level of the
grid hierarchy, and thus restricting its use to wavelet spaces where such decompositions are
feasible. This was remedied for finite element spaces of low order in [12] by replacing L2-
projections onto each level by more cheaply computed operators. In all the preconditioners
mentioned above, one drawback is that only simple scaling smoothers can be used, which
might be seen as too restrictive. Lastly, in [30] the authors constructed optimal auxiliary
space preconditioners for (1.1), but they needed to presuppose that a discrete version of (−∆)s
was easily computable in the auxiliary space. We will in this work not assume such a dis-
crete operator to be at our disposable. That is, the proposed preconditioners will not require
the computation of (−∆)±s , or the fractional power of any positive definite operator for that
matter.

The reason for this design choice is that our main motivational application are coupled
multihysics- and trace constraint problems, where fractional Sobolev spaces are part of a well-
posed variational formulation, but the fractional Laplacian is absent from the operator char-
acterizing the problem. As an illustrative example, letΩ be a bounded domainRn, with n = 2
or 3, and Γ denotes a structure in Ω or on its boundary with codimension 1. Consider the
Poisson equation, −∆u = f in Ω, with the constraint conditions u = g on Γ for given data
f and g . Imposing the trace constraint weakly, similarly to how it was done in [4], yields a
saddle point system of the form

(1.2)
−∆u +T ∗λ= f , x ∈Ω

T u = g , x ∈ Γ

where T : H 1(Ω) → H
1
2 (Γ ) is the trace operator. The solution (u,λ) is sought in H 1(Ω)×

H− 1
2 (Γ ). Rewriting (1.2) in matrix form, we have

A
�

u
λ

�
=
�

f
g

�
,

whereA =
�−∆ T ∗

T 0

�
is an isomorphism from H 1(Ω)×H− 1

2 (Γ ) to
�
H 1(Ω)

�′ ×H
1
2 (Γ ). By

the framework in [28], a preconditioner for a discretization of (1.2) should be based on a
symmetric isomorphismB :

�
H 1(Ω)

�′×H
1
2 (Γ )→H 1(Ω)×H− 1

2 (Γ ), with the canonical choice

2



being

(1.3) B =
�
(I −∆)−1 0

0 (−∆Γ )
1
2

�
.

Cheaply computable operators, spectrally equivalent to (I−∆)−1 are well known. The second
block, (−∆Γ )

1
2 is as such the challenging part when designing preconditioners based on (1.3).

See also that the fractional Laplacian only appears inB , and not inA .
We remark that even if the above example is relatively simple, similar techniques can be used

in problems where different PDEs are posed on separate domains and linked through some
continuity conditions on a common interface Γ . One or more of these continuity conditions
can then be enforced weakly by use of Lagrange multipliers, which often will posed in a frac-
tional Sobolev space. When preconditioning the resultant system, the problem of establishing
a computationally feasible operator, spectrally equivalent to (−∆Γ )±

1
2 persists. For instance,

in [25] the authors study a multiphysics problem posed on domains of different topological
dimension, and continuity is imposed weakly using a Lagrange multiplier. Other applications
can be found in [6], where the no-slip condition on the surface of a falling body in a fluid is
imposed weakly, or in [31], where the potential jump on a membrane of a cardiac cell is treated
similarly. If the embedded structure Γ in (1.2) instead has codimension 2, then numerical ex-
periments in [24] suggests that block diagonal preconditioners where one block is based on
(−∆Γ )−s , with s ∈ (−0.2,−0.1), provide efficient preconditioners.

The current paper can in a couple of ways be viewed as continuation of [5]. Firstly, we
define efficient preconditioners for the fractional Laplacian when the exponent s ∈ [−1,0],
complementing the preconditioners introduced in the previous work. Secondly, in this work
we generalize the results from [5] to positive fractional powers of Λ. The analysis will aim to
substantiate the intuition that if additive multilevel methods are efficient for s = 0 and s = 1,
then “by interpolation” it should be efficient for every s ∈ (0,1). We remark, however, that
the analysis on these multilevel methods for fractional H (div ) operators assumes certain two-
level error estimates onΛ1−s that will go unproven in this work. This is an unsatisfactory state
of affairs, but we do give an approach for how these error estimates can be proven, as well as
motivate their veracity. The techniques we propose will borrow from [9], and would require
a substantial additional toolset. As such, it is here left as future work.

The remainder of the current paper is structured as follows. In section 2 we describe the
notation used throughout the paper, as well as give brief introductions to the theory of inter-
polation spaces and some useful results in functional analysis. Section 3 is devoted to substan-
tiating the above heuristic argument, and show that provided we are given efficient precon-
ditioners for fractional H (div ) operators with positive exponent, we can construct efficient
preconditioners for the fractional Laplacian with negative exponent. Then, in section 4 we
propose such preconditioners as additive multigrid operators and give sufficient conditions
under which they are efficient. Lastly, in section 5 we provide a series of numerical experi-
ments verifying the theoretical results obtained in this work.

2. PRELIMINARIES

Let Ω be a bounded, polygonal domain inRn, with boundary ∂ Ω. We denote by L2(Ω) the
space of square integrable functions on Ω, with inner product (·, ·), and norm ‖·‖. We denote
by H 1(Ω) the usual Sobolev space of functions in L2(Ω) with all first-order derivatives also in
L2(Ω). The closure of smooth functions with compact support in Ωwe denote by H 1

0 (Ω), and
its dual space is H−1(Ω). For k ∈ {−1,1}, the inner product and norm of H k(Ω) we denote
by (·, ·)k and ‖·‖k , respectively. Further, we let H (div ;Ω) denote the Hilbert space of square-
integrable vector fields on Ω with square-integrable divergence, while we write H (curl ;Ω) to
mean the space of square-integrable vector fields on Ω with square-integrable curl . We let
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Λ(·, ·) denote the standard inner product on H (div ;Ω) defined by

Λ(σ ,τ) = (σ ,τ)+ (div σ , div τ) , σ ,τ ∈H (div ;Ω).

In general, a Hilbert space X is equipped with an inner product and norm, which we denote
by (·, ·)X and ‖·‖X , respectively, and its dual is denoted by X ′

. For two Hilbert spaces X and
Y , we write L (X ,Y ) to mean the space of bounded linear operators T : X → Y , which we
equip with the usual operator norm

‖T ‖L (X ,Y ) = sup
x∈X

‖T x‖Y

‖x‖X

.

Let now A be a symmetric positive definite operator on a Hilbert space X . For sake of
simplicity, we assume the spectrum of A to be wholly discrete, i.e. A has empty continuous-
and residual spectrum. Denote by {(λk ,φk)}∞k=1 the set of eigenpairs of A, normalized so that

(φk ,φl )X = δk ,l ,

where δk ,l is the Kronecker delta. Thenφk , for k = 1,2, . . . forms an orthonormal basis of X ,
and if u ∈X has the representation u =

∑∞
k=1 ckφk , then

Au =
∞∑

k=1

λk ckφk .

For s ∈R, we define the fractional power As of A by

As u =
∞∑

k=1

λs
k ckφk .

If A is only positive semi-definite, then we must restrict to s > 0. If B is another symmetric
positive semi-definite operator on X , we write A≤ B if for every u ∈X

(Au, u)X ≤ (B u, u)X
holds. Note that A≥ 0 is equivalent to saying that A is positive semi-definite. In addition, we
shall write A≤ 1 to mean that (Au, u)X ≤ (u, u)X for every u ∈X .

A result in operator theory is the Löwner-Heinz inequality, which in our case states that if
A≤ B , then

(2.1) As ≤ B s , s ∈ [0,1],

cf. for instance [22]. Inequality (2.1) means that the function x s with x ∈ [0,∞) is operator
monotone for s ∈ [0,1]. It follows that −(x)s is operator convex (cf. [18, Thm. 2.1 and 2.5]),
that is, for any two symmetric positive semi-definite operators A and B on a Hilbert space X ,
the inequality

λAs +(1−λ)B s ≤ (λA+(1−λ)B)s
holds for every λ ∈ [0,1]. A key result regarding operator convex functions is the Jensen’s
operator inequality (cf. [19, Theorem 2.1]). The version we will use in the current work states
that for any bounded, symmetric positive semi-definite operator A on X , and P : X → X so
that P ∗P ≤ 1

(2.2) P ∗As P ≤ (P ∗AP )s .

We will at numerous times in this paper be in a position where we want to use (2.2), but
where P is a contraction between different Hilbert spaces. Thus, we make the following slight
generalization of (2.2).

Lemma 2.1. Let X1 and X2 be two Hilbert spaces, and T : X1→X2 an operator satisfying T ∗T ≤
1 on X1. Further, assume that A is a bounded, symmetric positive semi-definite operator on X2.
Then

(2.3) T ∗As T ≤ (T ∗AT )s
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for every s ∈ [0,1].

Proof. See that (2.3) holds for s = 0 and s = 1, so fix s ∈ (0,1). We define the auxiliary Hilbert
space X =X1⊕X2, with inner product inherited from the inner products on X1 and X2. Now,
define linear operators P and Ã on X as

P =
�

0 0
T 0

�
, and Ã=

�
0 0
0 A

�
.

A simple calculation then shows that

P ∗P =
�

T ∗T 0
0 0

�
≤ 1,

by the assumption on T . Similarly,

P ∗ÃθP =
�

T ∗AθT 0
0 0

�

for every θ > 0. Then, we have from the standard Jensen’s inequality in (2.2) that�
T ∗As T 0

0 0

�
= P ∗Ãs P ≤

�
P ∗ÃP

�s
=
�
(T ∗AT )s 0

0 0

�
.

In particular, T ∗As T ≤ (T ∗AT )s , which completes the proof. �

2.1. Interpolation spaces. In defining fractional Sobolev spaces and fractional H (div ) spaces,
we will use some results from interpolation theory, as presented in [27], and so we shall make
a quick review.

Let X and Y be separable Hilbert spaces with inner products (·, ·)X and (·, ·)Y , and corre-
sponding norms ‖·‖X and ‖·‖Y , respectively. Furthermore, we assume that X ⊂ Y , with X
dense in Y and continuous injection. In this case we call X and Y compatible.

Denote by D(A) the set of u ∈ Y so that the linear form

Lu(v) = (u, v)X v ∈X

is continuous in Y . Following the discussion in [27], we note that D(A) is dense in Y . Using
Riesz’ representation theorem, there is a w ∈ Y so that

(w, v)Y = (u, v)X .

The mapping u 7→ w defines an unbounded linear operator A : D(A)→ Y , which is defined
by

(2.4) (Au, v)Y = (u, v)X .

Clearly, A is self-adjoint and positive. Using the spectral decomposition of self-adjoint op-
erators, we may define the powers, Aθ, θ ∈ R, of A. We define interpolation spaces in the
following way:

Definition 2.1. Let X and Y satisfy the above assumptions. For θ ∈ [0,1] we define the
interpolation space

(2.5) [Y,X ]θ =D(A
θ
2 ) =

n
u ∈ Y : A

θ
2 u ∈ Y

o

with norm given by the graph norm

(2.6) ‖u‖[Y,X ]θ
:=
�‖u‖2

Y +
�
Aθu, u

�
Y

� 1
2 .

It follows by the definition that

[Y,X ]0 = Y, and [Y,X ]1 =X .

The following is a key Theorem in interpolation theory.
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Theorem 2.1. Let {X ,Y } and {X ,Y } be two pairs of compatible Hilbert spaces. Further, let T
be a continuous operatorL (X ,X )∩L (Y,Y ), so that

‖T u‖X ≤M0 ‖u‖X ,

‖T u‖Y ≤M1 ‖u‖Y .

Then T ∈L ([Y,X ]θ , [Y ,X ]θ), and

(2.7) ‖T u‖[Y ,X ]θ ≤C M 1−θ
0 M θ

1 ‖u‖[Y,X ]θ
,

where C is a constant independent of T ,X , and Y .

If we now make the identification Y = Y ′
, then Y ⊂ X ′

is dense, with continuous em-
bedding. Thus, the interpolation space

�
X ′

,Y
�
θ

is well-defined for θ ∈ [0,1] according to
definition 2.1. Moreover, we have that (cf. [27, Thm. 6.2])

(2.8)
�
X
′
,Y
�
θ
= [Y,X ]

′
1−θ .

It is well-known that H 1(Ω) is densely and continuously embedded in L2(Ω), which implies
that we can define the fractional Sobolev spaces H s (Ω) for s ∈ [0,1] as

H s (Ω) :=
�
L2(Ω), H 1(Ω)

�
s

We go on to define H s
0 (Ω) as the closure in H s (Ω) of smooth and compactly supported func-

tions on Ω, while for s ∈ [−1,0], we define

H s (Ω) =H−s
0 (Ω)

′

We note that this definition for negative fractional Sobolev spaces is equivalent to interpolation
between H−1(Ω) and L2(Ω).

Similarly, we define the fractional H (div ;Ω) space as

(2.9) H s (div ;Ω) :=
�
L2(Ω), H (div ;Ω)

�
s
.

2.2. Discrete interpolation spaces. The discrete variant of fractional operators can be con-
structed analogously to the continuous setting. Suppose Xh ⊂ X is a finite-dimensional sub-
space. We can define the operator Ah : Xh →Xh by

(Ah v, w)Y = (v, w)X .

We note that because Xh is finite-dimensional, all norms are equivalent, and in particular, Ah
is a bounded operator. Since Ah is SPD, we can define its fractional powers Aθh for θ ∈ R,
and discrete fractional norms ‖·‖2

θ,h :=
�
Aθh ·, ·

�
. When θ = 0 and θ = 1, the norm ‖·‖θ,h

coincides with the Y - and X norm, respectively. Furthermore, for θ ∈ (0,1) the discrete
norm is equivalent to the [Y,X ]θ norm, with constants of equivalence independent of Xh (cf.
[1, Proposition 3.2])

Suppose now that we have an additional finite-dimensional subspace XH ⊂Xh . Analogously
to before we can define the SPD operator AH : XH → XH , and its fractional powers AθH , with
θ ∈R. In the case of θ= 0 or θ= 1 we have that

�
AθH v, w

�
Y
=
�
Aθh v, w

�
Y

, v, w ∈XH .

However, this inheritance of bilinear forms fails when θ ∈ (0,1). Getting ahead of ourselves,
the inheritance of bilinear forms is a common assumption in the design and analysis of multi-
grid algorithms. Therefore, that the inheritance fails to hold when θ ∈ (0,1) can be detrimen-
tal. The following lemma shows that we are able to recover one of the key inequalities used in
[14] in the analysis of multigrid algorithms on non-inherited bilinear forms.
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Lemma 2.2. Let θ ∈ [0,1]. We have that restricted to XH

Aθh ≤AθH .

That is, for every v ∈XH

(2.10)
�
Aθh v, v

�
Y
≤ �AθH v, v

�
Y

.

Proof. As already noted, for θ = 0 and θ = 1 (2.10) holds with equality, so for the remainder
of the proof let 0<θ < 1.

Let IH : XH → Xh be the inclusion operator, and I ∗H its adjoint with respect to the Y -inner
product. Then, I ∗H IH is the identity on XH , so I ∗H IH ≤ 1 holds trivially. By Lemma 2.1, we
thus have that

(2.11) I ∗H Aθh IH ≤ (I ∗H Ah IH )
θ .

The result follows from (2.11) and the observation that AH = I ∗H Ah IH . �

3. PRECONDITIONER FOR FRACTIONAL LAPLACIAN

In this section we will establish a way to construct preconditioners for (−∆)−s when s ∈
[0,1]. We will begin by first considering the continuous setting, which will motivate the
construction of preconditioners for a discretization of (−∆)−s . We define −∆ : H 1

0 (Ω) →
H−1(Ω) by

((−∆)u, v) = (∇u,∇v) , u, v ∈H 1
0 (Ω).

In view of the interpolation theory discussed in the previous section, it is evident that (−∆)s
is well-defined for any s ∈ [0,1], and it is an isomorphism from H s

0 (Ω) to H−s (Ω). We denote
its inverse by (−∆)−s , and consider the problem of finding u ∈H−s (Ω) so that

(3.1) (−∆)−s u = f ,

for a given f ∈H s
0 (Ω). To precondition (3.1), we seek a self-adjoint isomorphism B s : H s

0 (Ω)→
H−s (Ω), so that

(3.2) C1 ‖u‖H−s (Ω) ≤ (B s u, u)≤C2 ‖u‖H−s (Ω)

for some constant C1,C2 > 0.
Now, consider the gradient operator, ∇. It is clear that ∇ ∈ L (H 1

0 (Ω), L2(Ω)). On L2(Ω),
we define

(∇u,τ) =− (u, div τ) , u ∈ L2(Ω), τ ∈H (div ;Ω).
Using integration by parts, this reduces to the standard ∇ when u ∈ H 1

0 (Ω). Moreover, we
have that

‖∇u‖H (div ,Ω)′ = sup
τ∈H (div ;Ω)

(u, div τ)
‖τ‖H (div ;Ω)

≤ ‖u‖ .

Thus,
∇∈L (H 1

0 (Ω), L2(Ω))∩L (L2(Ω), H (div ;Ω)
′
),

and Theorem 2.1 then implies that∇∈L �
H s

0 (Ω),
�
H (div ;Ω)′ , L2(Ω)

�
s

�
. In view of (2.8) and

(2.9) we can rewrite this as

(3.3) ∇∈L (H s
0 (Ω), H 1−s (div ;Ω)

′
).

Suppose now that we are given a self-adjoint isomorphism B1−s
div : H 1−s (div ;Ω)′→H 1−s (div ;Ω)

which for every τ ∈H 1−s (div ;Ω)′ satisfies

(3.4) Cd ,1 ‖τ‖2
H 1−s (div ;Ω)′ ≤

�
B1−s

div τ,τ
�≤Cd ,2 ‖τ‖2

H 1−s (div ;Ω)′

for some constants Cd ,1,Cd ,2 > 0 independent of τ. We then define

(3.5) B s =∇∗B1−s
div ∇.
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Our aim is to show that B s defined by (3.5) satisfies (3.2). We begin by observing that B s is
self-adjoint and maps elements from H s

0 (Ω) to H−s (Ω). Moreover, the mapping property of
∇ in (3.3) and the boundedness of B1−s

div imply that B s ∈L (H s
0 (Ω), H−s (Ω)).

Establishing the lower bound of (3.2) is more difficult in that we want to interpolate between
lower bounds on the gradient operator. However, Theorem 2.1 is not applicable in this setting.
To overcome this problem, we will interpolate between bounds on a left-inverse, T , of∇. In
this work, we employ the Bogovskĭı operator established in [15]. If Ω is star-shaped with
respect to an open ball B , T takes for a vector field τ the explicit form

T τ(x) =
∫
Ω

K(x, y)(x − y) ·τ(y)dy, where K(x, y) =
∫ ∞

1
(t − 1)n−1θ(y + t (x − y))dt .

Here, θ ∈C∞0 (Rn) with support contained in B and integrates to 1. It can be checked that T
is a left-inverse of∇, and satisfies

(3.6) T ∈L (L2(Ω), H 1
0 (Ω))∩L (H (div ;Ω)

′
, L2(Ω)),

see [15, Cor. 3.4]. We note that the definition of T can be extended to general Lipschitz
domains — as such domains are finite unions of star-shaped domains — with the same mapping
properties. From (3.6) and Theorem 2.1 we have that

(3.7) T ∈L (H 1−s (div ;Ω)
′
, H s

0 (Ω)).

Finally, we are in a position to prove that B s satisfies (3.2), and hence is a suitable precondi-
tioner for (3.1). The result is stated in the following theorem.

Theorem 3.1. Let s ∈ [0,1], and B1−s
div : H 1−s (div ;Ω)′ → H 1−s (div ;Ω) satisfy (3.4). Then B s

defined by (3.5) satisfies (3.2) with

(3.8) C1 =Cd ,1 ‖T ‖−2
L (H 1−s (div ;Ω)′ ,H s

0 (Ω))
, and C2 =Cd ,2 ‖∇‖2

L (H s
0 (Ω),H

1−s (div ;Ω)′ ) .

Proof. Fix s ∈ [0,1], and take any u ∈H s
0 (Ω). From the definition of B s , see that

(B s u, u) =
�
B1−s

div ∇u,∇u
�
.

From the second inequality of (3.4) and the mapping property of∇ in (3.3) we deduce that

(B s u, u)≤Cd ,2 ‖∇u‖2
H 1−s (div ;Ω)′ ≤Cd ,2 ‖∇‖2

L (H s
0 (Ω),H

1−s (div ;Ω)′ ) ‖u‖2
H s

0 (Ω)
,

which proves the second inequality of (3.2) with C2 as given in (3.8).
We can treat the lower bound of (3.2) similarly, but now use the lower bound of (3.4) and

(3.7). That is, we have

(3.9) (B s u, u)≥Cd ,1 ‖∇u‖2
H 1−s (div ;Ω)′ ,

and, since T∇ is the identity on H s
0 (Ω),

(3.10) ‖u‖H s
0 (Ω)
= ‖T∇u‖H s

0 (Ω)
≤ ‖T ‖L (H 1−s (div ;Ω)′ ,H s

0 (Ω))
‖∇u‖H 1−s (div ;Ω)′ .

Combining (3.9) and (3.10) yields

(B s u, u)≥Cd ,1 ‖T ‖−2
L (H 1−s (div ;Ω)′ ,H s

0 (Ω))
‖u‖2

H s
0 (Ω)

.

�

Remark 1. With the definition of B s given in (3.5), we have essentially translated the problem
of preconditioning (−∆)−s to the problem of preconditioning Λ1−s . The advantage of this is
that the latter problem has positive exponent, and so, as we will see, will have similar spectral
properties to Λ, for which efficient preconditioning strategies have been studied earlier.
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3.1. Discrete setting. We will now use the construction of B s from the previous section as
motivation to construct an analogous discrete operator. To that end, let Th be a shape-regular
triangulation of Ω, with characteristic mesh size h. For r ≥ 0, we let Sh denote the space of
all discontinuous, piecewise polynomials of degree at most r , subordinate to Th . That is,

Sh =
�

u ∈ L2(Ω) : u
��
T ∈ Pr (T ), ∀T ∈ Th

	
.

We further let Vh = RT r (Th) ⊂ H (div ;Ω) be the Raviart-Thomas space of index r , and
Ch =N E r (Th) ⊂ H (curl ;Ω) the Nedelec space of first kind of index r , both relative to the
triangulation Th . It is then well-known that curl (Ch)⊂Vh , and div (Vh)⊂ Sh . We define the
discrete gradient operator∇h : Sh →Vh by

(3.11) (∇h u,τ) =− (u, div τ) , u ∈ Sh , τ ∈Vh ,

and discrete curl operator curl h : Vh →Ch by

(3.12) (curl hτ, q) = (τ,curl q) , τ ∈Vh , q ∈Ch .

With these definitions, we have the discrete Helmholtz decomposition Vh = curlCh ⊕∇h Sh .
That is, every τ ∈Vh can be written as

(3.13) τ =∇h u + curl q ,

for unique u ∈ Sh and q ∈ curl hVh . Cf. e.g. [3]. Moreover, this decomposition is orthogonal
in both (·, ·) and Λ(·, ·).

To get a discrete analogue of the preconditioner B s in (3.5), we further need to define discrete
counterparts to the operators −∆ and Λ. To that end, we define the discrete Laplacian as
Ah :=∇∗h∇h , i.e. Ah is the symmetric operator on Sh that satisfies

(3.14) (Ah u, v) = (∇h u,∇h v) , u, v ∈ Sh .

Lastly, since Vh is a conforming discretization of H (div ;Ω), we simply take Λh : Vh →Vh to
be the restriction of Λ to Vh . In other words,

(Λhσ ,τ) =Λ (σ ,τ) , σ , τ ∈Vh .

It is well-known that (cf. for instance [8]), with these particular choices of Sh and Vh , there
is a β> 0 indepedent of h so that for every u ∈ Sh

(3.15) sup
τ∈Vh

(u, div τ)

(Λhτ,τ)
1
2

≥β‖u‖ .

This implies that div : Vh → Sh is surjective or, equivalently, that∇h : Sh →Vh is injective. As
a consequence, Ah is not only symmetric, but also positive-definite, and so As

h is well-defined
for every s ∈ R. The discrete counterpart to (3.1) is then to find, for s ∈ [0,1] and f ∈ Sh , a
u ∈ Sh such that

(3.16) A−s
h u = f .

To precondition (3.16), we seek a symmetric positive definite operator B s
h : Sh → Sh which is

easy to compute and spectrally equivalent to As
h , with constants of equivalence independent

of h. Using the previous continuous preconditioner defined in (3.5) as motivation, we will see
that

(3.17) B s
h =∇∗hB1−s

div ,h∇h ,

where B1−s
div ,h : Vh → Vh is a symmetric positive definite operator spectrally equivalent to

Λ−(1−s)
h , leads to an efficient preconditioner for A−s

h . The key result in this section is given
in Theorem 3.2 below, whose proof will resemble the argument we made in the continuous
setting. In particular, we must ensure that ∇h has the appropriate upper and lower bounds
when s = 0 and s = 1. As we will see, the intermediate cases will then follow from Jensen’s
operator inequality.
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For the upper bounds of∇h , we have from the definitions of∇h and Λh that

(3.18)

�
Λ−1

h ∇h u,∇h u
�
=




Λ−

1
2

h ∇h u






2

= sup
τ∈Vh

�
Λ
− 1

2
h ∇h u,τ

�2

‖τ‖2

= sup
τ∈Vh

(∇h u,τ)2

(Λhτ,τ)
≤ ‖u‖2 ,

which is the discrete analogue to ∇ ∈ L (L2(Ω), H (div ;Ω)′). The discrete analogue to ∇ ∈
L (H 1

0 (Ω), L2(Ω)) is simply that ‖∇h u‖2 = (Ah u, u).
For the necessary lower bounds on ∇h , we define L : Vh → Sh by Lτ = u according to the

discrete Helmholtz decomposition (3.13). It is then evident that L∇h is the identity on Sh .
That L satisfies the discrete analogues to (3.6) is given in the following lemma.

Lemma 3.1. With L : Vh → Sh as defined above, it holds for every τ ∈Vh that

(3.19) ‖Lτ‖2 ≤β−2 �Λ−1
h τ,τ

�
, and (Ah Lτ, Lτ)≤ ‖τ‖2 ,

where β is given by (3.15).

Proof. Fix τ ∈Vh , and let u = Lτ. From (3.15) and the decomposition (3.13), we have that

β‖u‖ ≤ sup
σ∈Vh

(∇h u,σ)

(Λhσ ,σ)
1
2

≤ sup
σ∈Vh

(τ,σ)

(Λhσ ,σ)
1
2

.

Replacing σ by Λ−
1
2

h σ in the above yields

β‖u‖ ≤ sup
σ∈Vh

�
Λ
− 1

2
h τ,σ

�

‖σ‖ ≤ �Λ−1
h τ,τ

� 1
2 ,

which proves the first inequality of (3.19).
The definitions of Ah and L, and the L2-orthogonality of the decomposition (3.13) imply

the second inequality of (3.19), since

(Ah Lτ, Lτ) = ‖∇h u‖2 ≤ ‖τ‖2 .

�

We are now in a position to state and prove the main spectral equivalence result of this
section, from which the spectral equivalence between B s

h given in (3.17) and As
h will readily

follow.

Theorem 3.2. Let∇h , Ah and Λh be defined as above, and let s ∈ [0,1]. Then, for every u ∈ Sh

(3.20) β2(1−s) �As
h u, u

�≤ �Λ−(1−s)
h ∇h u,∇h u

�
≤ �As

h u, u
�
,

where β is given by (3.15).

Proof. Fix u ∈ Sh and s ∈ [0,1]. We begin by proving the second inequality of (3.20). Define

T1 =Λ
− 1

2
h ∇h : Sh →Vh . From (3.18) it follows that T ∗1 T1 ≤ 1. Thus, Lemma 2.1 implies that

(3.21) T ∗1 Λ
s
hT1 ≤ (T ∗1 ΛhT1)

s .

Inserting the definition of T1 into (3.21) yields

∇∗hΛ−(1−s)
h ∇h ≤

�∇∗h∇h

�s =As
h ,

which is equivalent to the second inequality of (3.20).
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In proving the first inequality of (3.20), we will again make use of Lemma 2.1. To that end,

we now set T2 =βLΛ
1
2
h , and from Lemma 3.1 it follows that T ∗2 T2 ≤ 1. Thus, an application

of Lemma 2.1 yields
T ∗2 As

hT2 ≤ (T ∗2 AhT2)
s ,

which after inserting the definition of T2 becomes

(3.22) β2(1−s)Λ
1
2
h L∗As

h LΛ
1
2
h ≤

�
Λ

1
2
h L∗Ah LΛ

1
2
h

�s
.

From Lemma 3.1 L∗Ah L≤ 1. Pre- and post multplying this inequality by Λ
1
2
h and using the

Löwner-Heinz inequality (2.1), we deduce that

(3.23)
�
Λ

1
2
h L∗Ah LΛ

1
2
h

�s
≤Λs

h .

We now use (3.22) together with (3.23) and pre- and post multiply by Λ−
1
2

h to get

β2(1−s)L∗As
h L≤Λ−(1−s)

h .

Finally, multiplying from the left by∇∗h and from the right by∇h , and using that both∇∗h L∗

and L∇h are the identity on Sh , we arrive at

β2(1−s)As
h ≤∇∗hΛ−(1−s)

h ∇h ,

which is the first inequality of (3.20). �
Corollary 3.1. Under the same assumptions as in Theorem 3.2, suppose we are given a symmetric
positive definite operator B1−s

div ,h : Vh → Vh spectrally equivalent to Λ−(1−s)
h . That is, there are

constants C1,C2 > 0 so that

(3.24) C1

�
Λ−(1−s)

h τ,τ
�
≤
�
B1−s

div ,hτ,τ
�
≤C2

�
Λ−(1−s)

h τ,τ
�

for every τ ∈Vh . Then B s
h defined by (3.17) satisfies

(3.25) C1β
2(1−s) �As

h u, u
�≤ �B s

h u, u
�≤C2

�
As

h u, u
�

for every u ∈ Sh .

Proof. Take any s ∈ [0,1] and u ∈ Sh . By the definition of B s
h , the second inequalities of (3.24)

and (3.20) �
B s

h u, u
�≤C2

�
Λ−(1−s)

h ∇h u,∇h u
�
≤C2

�
As

h u, u
�
,

which proves the second inequality of (3.25). The first inequality is proved similarly, using the
lower bounds in (3.24) and (3.20). �
Remark 2. At this point it is worth remarking on the implementation of B s

h . In computer
code, a function u ∈ Sh can have two distinct representations as vectors in RNS , where NS =
dim Sh . Let

�
φi

h

	NS

i=1
be a basis for Sh . Then, if u =

∑NS
i=1 ciφ

i
h , we call the vector u =

(c1, . . . , cNS
)T ∈ RNS the coefficient vector representation of u, while the vector ũ ∈ RNS with

entries ũ i =
�
u,φi

h

�
, the dual vector representation of u. Cf. e.g. [10, Sec. 15] for more

details. Let
�
ψi

h

	NV

i=1
, with NV = dimVh , be a basis for Vh . For τ ∈ Vh , let τ and τ̃ be the

analogous coefficient- and dual vector representations of τ. The most straightforward matrix
realization of∇h is then the matrix Dh ∈RNV×NS with entries

(Dh)i , j =−
�
φi

h , div ψi
h

�
.

We see that Dh takes coefficient vectors in RNS and returns dual vectors in RNV . Conversely,
the transpose DT

h takes coefficient vectors in RNV as input and returns dual vectors in RNS . If

11



B1−s
div ,h is the matrix realization of B1−s

div ,h taking dual vectors as input and returning coefficient
vectors, B s

h can be realized by the matrix

Bs
h =DT

h B1−s
div ,hDh .

Then, Bs
h takes coefficient vectors as input and returns dual vectors, which is opposite to usual

implementations of preconditioners. Thus, if this preconditioner should be used as part of a
preconditioner for problems of the form (1.2), some care is needed. In particular, the Lagrange
multiplier λ should be represented as a dual vector, while the trace constraint g should be
represented by a coefficient vector. We see then that the matrix realization of the trace operator
T should take coefficient vectors to coefficient vectors. That is, the matrix is simply a mapping
of degrees of freedom from one space to another, and no numerical integration is needed.

By Corollary 3.1, we know that we can construct an efficient preconditioner for A−s
h , pro-

vided we have an efficient preconditioner for Λ1−s
h at our disposable. This is by no means a

given. However, we will in the next section propose a construction of B1−s
div ,h on Vh satisfying

(3.24) based on an additive multigrid approach.

4. ADDITIVE MULTIGRID METHODS FOR Λs
h

Recall that in section 3 we constructed an efficient preconditioner for A−s
h , where Ah is a

discrete Laplacian on Sh and s ∈ [0,1] provided we are given an efficient preconditioner for
Λ1−s

h on Vh , which we denote by B1−s
div ,h . In this section we give one construction of B1−s

div ,h based
on a multigrid approach similar to that presented in [5].

To motivate the construction we note that multigrid methods, and other space decomposi-
tion methods, are popular and well-studied preconditioning strategies for H (div ) problem. A
key observation is thatΛh reduces to the identity operator on the kernel of div in Vh , while on
the L2-orthogonal complement Λh roughly behaves like an elliptic operator with a zero-order
term. In particular, Λh can be decomposed into operators where subspace decomposition
methods have proven to be efficient. We will now see that this line of reasoning continues to
hold for Λs

h . To that end, consider the discrete Helmholtz decomposition of v ∈Vh given in
(3.13),

(4.1) τ =∇h u + curl q ,

where u ∈ Sh and q ∈ curl hVh . From the definition of ∇h , we have that Λh = I +∇h∇∗h ,
which when applied to (4.1) yields

(4.2) Λhτ =∇h(I +Ah)u + curl q ,

where we recall that Ah = ∇∗h∇h is a discrete Laplacian. We see that Λh is invariant in both
∇h Sh and its orthogonal complement, curlCh . From (4.2) it is also evident that the projections
τ 7→ ∇h u and τ 7→ curl q both commute with Λh . In accordance with the discussion made
in [16], it follows that Λs

h also leave the decomposition in (4.1) invariant. Thus, Λs
h reduces

to the identity operator on curlCh , and behaves like (I +Ah)
s on ∇h Sh . Multigrid methods

were shown to be computationally effective for such operators in [5], and this motivates using
a similar approach for constructing preconditioners for Λs

h .
Before proceeding, some issues need to be adressed. As shown in Lemma 2.2, the operators

on each level will not be inherited. Therefore, the analysis will follow the framework of [14].
Another problem is that the computation of Λs

h requires solving a potentially large eigenvalue
problem, which can be prohibitively expensive. As a consequence, we cannot assume that we
can compute errors on each level. Standard multigrid algorithms, such as V-cycle, should then
be excluded. For this reason, we design the operators as additive multigrid operators, [13],
where the residual of the problem is transferred to every grid level, and no application of Λs

h
is required.

12



In the following, we will use the same multilevel decomposition as was used in [2], but we
emphasize that the analysis extends to other decompositions, such as that given in [20].

To construct our multigrid operator for Λs
h suppose Th is the result of successive refine-

ments. That is, we are given a sequence

T1 ⊂ · · · ⊂ TJ =Th ,

of shape-regular triangulations of Ω, and Tk has charachteristic mesh size hk for k = 1, . . . , J .
We will assume that the refinements are bounded, in the sense that there is a constant γ ≥ 1
so that hk−1 ≤ γ hk for k = 2, . . . , J . We note that in applications γ is around 2. For each
k, we set Vk = RT r (Tk) as the Raviart-Thomas space of index r relative to the mesh Tk .
We further define Sk ⊂ Sh and Ck ⊂ Ch analogously, as well as operators ∇k : Sk → Vk and
curl k : Vk →Ck as the L2-adjoint of div and curl , respectively.

For each k, we define Λk : Vk →Vk by

(Λkσ ,τ) =Λ (σ ,τ) , σ , τ ∈Vk .

It is evident that Λk is symmetric positive-definite, and so Λθk is well-defined for every θ ∈R,
and as a consequence of Lemma 2.2

(4.3)
�
Λs

kτ,τ
�≤ �Λs

k−1τ,τ
�

for s ∈ [0,1] and τ ∈Vk−1. For every k we define Qk : V →Vk as the L2-orthogonal projection
and P s

k ,k−1 : Vk →Vk−1 by
�
Λs

k−1P s
k ,k−1σk ,τk−1

�
=
�
Λs

kσk ,τk−1

�
, σk ∈Vk , τk−1 ∈Vk−1,

with the interpretation that P s
1,0 = 0. We go on to define P s

k := P s
k+1,k · · ·P s

J ,J−1 : Vh → Vk ,
which satisfies �

Λs
k P s

kσ ,τk

�
=
�
Λs

hσ ,τk

�
,

for every σ ∈Vh and τk ∈Vk .
It follows by the definitions of P s

k and Qk that

(4.4) Λs
k P s

k =QkΛ
s
h .

Note that in general P s
k is not a projection, except when s = 0 (in which case it coincides with

Qk ) and s = 1. However, when s ∈ (0,1) we have for any τ ∈Vk that
�
Λs

k P s
kτ, P s

kτ
�
=
�
Λs

hτ, P s
kτ
�

≤ �Λs
hτ,τ

� 1
2
�
Λs

h P s
kτ, P s

kτ
� 1

2 .

Applying (4.3) in the above, we deduce that

(4.5)
�
Λs

k P s
kτ, P s

kτ
�≤ �Λs

hτ,τ
�
.

Suppose now that on each level k we are given symmetric positive definite operators Rs
k :

Vk →Vk . As is usual, we call these operators smoothers, and they should, in a sense to made
clearer below, approximate Λ−s

k . We then define our additive multigrid preconditioner B s
div ,h :

Vh →Vh as

(4.6) B s
div ,h =

J∑
k=1

Rs
kQk .

The following theorem gives sufficient conditions on the smoothers to establish spectral
equivalence between B s

div ,h and Λ−s
h . The proof will mostly follow by standard techniques, but

some care is needed since the operators are not inherited between grid levels.
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Theorem 4.1. Let s ∈ [0,1] and suppose that for each k = 1, . . . , J , the operator Rs
k as defined

above satisfies for every τ ∈Vk

(4.7)
�
Rs

kτ,τ
�≤C1

�
Λ−s

k τ,τ
�
,

and

(4.8)
��

Rs
k

�−1 (I − P s
k ,k−1)τ, (I − P s

k ,k−1)τ
�
≤C2

�
Λs

k(I − P s
k ,k−1)τ, (I − P s

k ,k−1)τ
�

for some constants C1 and C2 that are independent of k. Then,

(4.9) C−1
2

�
Λs

hτ,τ
�≤ �B s

div ,hΛ
s
hτ,Λs

hτ
�≤C1J

�
Λs

hτ,τ
�

Proof. For the upper bound of (4.9), straightforward application of the definitions of B s
div ,h

and P s
k show that

(4.10)
�
B s

div ,hΛ
s
hτ,Λs

hτ
�
=

J∑
k=1

�
Rs

kΛ
s
k P s

kτ,Λs
k P s

kτ
�
.

Assumption (4.7) and the non-inheritance inequality (4.5) then imply that

�
B s

div ,hΛ
s
hτ,Λs

hτ
�≤C1

J∑
k=1

�
Λs

k P s
kτ, P s

kτ
�≤C1J

�
Λs

hτ,τ
�
.

In proving the lower bound of (4.9), we consider the decomposition τ =
∑

k=1τk , with
τk = (P

s
k − P s

k−1)τ = (I − P s
k ,k−1)P

s
kτ ∈ Vk , for k = 1, . . . , J . Here, we interpret P0 = 0 and

PJ = I . Then,

�
Λs

hτ,τ
�
=

J∑
k=1

�
Λs

k P s
kτ,τk

�
=

J∑
k=1

�
Rs

kΛ
s
k P s

kτ,
�
Rs

k

�−1
τk

�
.

Since for every k, Rs
k is symmetric positive definite, we can use Cauchy-Schwarz’ and assump-

tion (4.8), resulting in

(4.11)

�
Λs

hτ,τ
�≤

J∑
k=1

�
Rs

kΛ
s
k P s

kτ,Λs
k P s

kτ
� 1

2
��

Rs
k

�−1
τk ,τk

� 1
2

≤
� J∑

k=1

�
Rs

kΛ
s
k P s

kτ,Λs
k P s

kτ
�� 1

2
�

C2

J∑
k=1

�
Λs

kτk ,τk

�� 1
2

=
�
B s

div ,hΛ
s
hτ,Λs

hτ
� 1

2

�
C2

J∑
k=1

�
Λs

kτk ,τk

�� 1
2

,

where in the last step we have used (4.10). In view of (4.11), it only remains to show that

(4.12)
J∑

k=1

�
Λs

kτk ,τk

�≤ �Λs
hτ,τ

�

to prove the lower bound of (4.9). Inserting the definition of τk and expanding factors, we
find that �

Λs
kτk ,τk

�
=
�
Λs

k P s
kτ, P s

kτ
�− 2

�
Λs

k P s
kτ, P s

k−1τ
�
+
�
Λs

k P s
k−1τ, P s

k−1τ
�
.

For the second term on the right hand side in the above, we have
�
Λs

k P s
kτ, P s

k−1τ
�
=
�
Λs

k−1P s
k−1τ, P s

k−1τ
�

since P s
k−1 = P s

k ,k−1P s
k , while for the third term we apply (4.3). Thus,
�
Λs

kτk ,τk

�≤ �Λs
k P s

kτ, P s
kτ
�− �Λs

k−1P s
k−1τ, P s

k−1τ
�
.
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It follows that
∑
k=1

�
Λs

kτk ,τk

�≤
J∑

k=1

��
Λs

k P s
kτ, P s

kτ
�− �Λs

k−1P s
k−1τ, P s

k−1τ
��≤ �Λs

hτ,τ
�
.

�
Now it remains to choose smoothers satisfying the assumptions in Theorem 4.1, and in this

work we consider additive Schwarz operators based on the same space decomposition as in
[2].

For k ≥ 2, let Nk denote the set of vertices in Tk , and for each ν ∈ Nk , let Tk ,ν be the set
of simplices meeting at the vertex ν . Then Tk ,ν forms a triangulation of a small subdomain
Ωk ,ν , and we define Vk ,ν to be the subspace of functions in Vk with support contained in Ω̄k ,ν .
The operators Λk ,ν : Vk ,ν →Vk ,ν and P s

k ,ν , Qk ,ν : Vk →Vk ,ν are then defined analogously to the
corresponding operators above. We then define

(4.13) Rs
k =

∑
ν∈Nk

Λ−s
k ,νQk ,ν ,

while on the coarsest level we set Rs
1 = Λ

−s
1 . It is well-known that additive Schwarz operator

of the form (4.13) are symmetric positive definite, and its inverse satisfies for τ ∈Vk

(4.14)
��

Rs
k

�−1
τ,τ

�
= inf

τ=
∑
ν τν

τν∈Vk ,ν

∑
ν∈Nk

�
Λs

k ,ντν ,τν
�
.

Moreover, the decomposition Vk =
∑

ν∈Nk
Vk ,ν is L2-stable in the sense that for every τ ∈Vk

there are τν ∈Vk ,ν so that τ =
∑

ν τν and

(4.15)
∑
ν∈Nk

‖τν‖2 ≤ c ‖τ‖2 ,

for some constant c , independent of k and v. The analogue to (4.15) continues to hold if we
define the decomposition Ck =

∑
ν Ck ,ν similarly (cf. [3]).

The verification of Assumption (4.7) in Theorem 4.1 is given in the following lemma.

Lemma 4.1. For k = 1, . . . , J and s ∈ [0,1], let Rs
k defined as above. Then there are constants

K0,K1 ≥ 0, independent of k so that

(4.16)

�
R0

kτ,τ
�≤K0 (τ,τ)�

R1
kτ,τ

�≤K1

�
Λ−1

k τ,τ
�

for every τ ∈Vk . Moreover, for s ∈ (0,1) and every τ ∈Vk

(4.17)
�
Rs

kτ,τ
�≤K1−s

0 K s
1

�
Λ−s

k τ,τ
�
,

where K0 and K1 are the same as in (4.16).

Proof. The assertions are evident when k = 1, with K0 = K1 = 1, so let k ≥ 2. A proof of
the second inequality of (4.16) can be found in e.g. [2, Theorem 4.1], so we limit ourselves
only to sketch a proof here. Setting P = R1

kΛk =
∑

ν∈Nk
P 1

k ,ν , the uniform finite overlaps of
the domains Ωk ,ν ensure that

Λ (Pτ, Pτ)≤K1Λ (P v, v) ,

for some K1, independent of k. It then follows that
�
Rs

kΛkτ,Λkτ
�
=Λ (Pτ,τ)≤Λ (Pτ, Pτ)

1
2 Λ (τ,τ)

1
2 ≤ [K1Λ (Pτ,τ)]

1
2 Λ (τ,τ)

1
2 .

Replacing τ withΛ−1
k τ in the above yields the second inequality of (4.16), and the first inequal-

ity of (4.16) can be proved similarly.
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For the intermediate result when s ∈ (0,1) we introduce the auxiliary Hilbert space V :=⊕
ν∈Nk

Vk ,ν , and define operators Q : Vk →V and ˜ : V→V given by

(Qτ)ν =Qk ,ντ,

and
(˜τ)ν =Λk ,ντν ,

for τ ∈Vk , ν ∈Nk , and τ ∈V. In particular, we note that ˜ is symmetric positive definite and
diagonal on V. Therefore, (˜θτ)ν = Λ

θ
k ,ντν for every θ ∈R, and so we have Rs

k =Q∗˜−sQ for
s ∈ [0,1].

From the definition of R0
k and the first inequality of (4.16), Q∗Q ≤ K0, and by scaling

Q̃ :=K
1
2

0 Q we then have that
Q̃∗Q̃≤ 1.

Then, by Lemma 2.1,

(4.18) Rs
k =K0Q̃

∗˜−sQ̃≤K0

�
Q̃∗˜−1Q̃

�s
=K0

�
K−1

0 R1
k

�s =K1−s
0

�
R1

k

�s .

Now, the second inequality of (4.16) states that R1
k ≤K1Λ

−1
k . Inserting this into (4.18) yields

Rs
k ≤K1−s

0 K s
1Λ
−s
k ,

which is equivalent to (4.17). �
Establishing that Assumption (4.8) in Theorem 4.1 holds turns out to be a more complicated

matter. In view of (4.14), we see that to prove (4.8) it is sufficient to find for every τ ∈ (I −
P s

k ,k−1)(Vk) a decomposition τ =
∑

ν τν , where τν ∈Vk ,ν so that
∑
ν∈Nk

�
Λs

k ,ντν ,τν
�≤C

�
Λs

kτ,τ
�
,

for some constant C that is independent of k and τ. In the following lemma, we verify this
stable decomposition, assuming some error bounds on the discrete Helmholtz decomposition.

Lemma 4.2. For k = 2, . . . , J , let τ ∈ (I − P s
k ,k−1)Vk have the discrete Helmholtz decomposition

(4.19) τ =∇k u + curl q ,

for some u ∈ Sk and q ∈ curl kVk . Assume there exists a constant c, independent of k and τ so
that

(4.20) ‖∇k u‖2 ≤ c h2s
k−1

�
Λs

kτ,τ
�
, and ‖q‖ ≤ c hk−1 ‖τ‖ .

Then there exists a decomposition τ =
∑

ν∈Nk
τν with τν ∈Vk ,ν , and a constant C so that

(4.21)
∑
ν∈Nk

�
Λs

k ,ντν ,τν
�≤C

�
Λs

kτ,τ
�
.

Proof. Fix τ ∈ (I − P s
k ,k−1)Vk , and let u ∈ Sh and q ∈ curl kVk be the discrete Helmholtz

decomposition according to (4.19). Further, for ν ∈Nk , let τ̃ν ∈Vk ,ν and qν ∈Ck ,ν be L2-stable
decompositions of∇k u and q , respectively. That is, q =

∑
ν qν and∇k u =

∑
ν τ̃ν satisfies

(4.22)
∑
ν

‖τ̃ν‖2 ≤ c ‖∇k u‖2 , and
∑
ν

‖qν‖2 ≤ c ‖q‖2 ,

according to (4.15). Then τ =
∑

ν τν , where we set τν = τ̃ν + curl qν ∈Vk ,ν .
By standard inverse inequality,

�
Λk ,ν τ̃ν , τ̃ν

�≤ c(1+h−2
k )‖τ̃ν‖2, and the inequality

�
Λs

k ,ν τ̃ν , τ̃ν
�
≤

(τ̃ν , τ̃ν)
1−s �Λk ,ν τ̃ν , τ̃ν

�s (cf. e.g. [27, Ch. 2.5])

(4.23)
�
Λs

k ,ν τ̃ν , τ̃ν
�≤ c(1+ h−2

k )
s ‖τ̃ν‖2 .
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Using the fractional inverse inequality (4.23) and a standard inverse inequality for qν , together
with (4.22), ∑

ν

�
Λs

k ,ντν ,τν
�≤ 2

∑
ν

��
Λs

k ,ν τ̃ν , τ̃ν
�
+ ‖curl qν‖2�

≤ c
∑
ν

�
(1+ h−2

k )
s ‖τ̃ν‖2+ h−2

k ‖qν‖2�

≤ c
�
(1+ h−2

k )
s ‖∇k u‖2+ h−2

k ‖q‖2� .

Then, (4.21) follows from the above and assumption (4.20). �
Remark 3. Verifying the assumption of Lemma 4.2 is by no means a trivial matter, and falls
beyond the scope of this paper. As such, we leave the additive multigrid operators B s

div ,h on
what may be deemed an unsure theoretical footing. However, we will here propose an ap-
proach to prove the assumptions made in Lemma 4.2. First off, the case s = 1 was proved
in [2, 3], where the thrust of the argument relied on two-level error estimates and duality
arguments.

From the identity (4.4) we see that

P s
k − P s

k−1 = (Λ
−s
k −Λ−s

k−1Qk−1)QkΛ
s
h ,

and so the assumptions in Lemma 4.2 are concerned with two-level error estimates for dis-
cretizations of fractional H (div ) problems. For the first estimate of (4.19), we recall the ob-
servation that Λs

k behaves like an elliptic operator on∇k Sk , and so the required error estimate
can be obtained using similar techniques as in [9, Thm. 4.3]. There, the authors proved error
estimates, under some regularity assumptions on the domain Ω. The proof uses the integral
formulation of the fractional Laplacian,

(−∆)s = 2sin(πs)
π

∫ ∞
0

t 2s−1(I − t 2∆)−1dt .

See also [7, Sec. 10.4]. The advantage of this approach is that error estimates for the fractional
Laplacian are transferred to error estimates for problems of the form

(I − t 2∆)u = f ,

where an abundance of results are available.

5. NUMERICAL EXPERIMENTS

We now present a series of numerical experiments, aimed at validating the theoretical results
established in previous sections. Specifically, in section 5.1 we test the preconditioner B s

div ,h
defined in (4.6), and the spectral equivalence established in Theorem 4.1.

We then consider

(5.1) As
h u = f ,

for a given in s ∈ [−1,0] and f ∈ Sh . In section 5.2, (5.1) is first solved using ∇∗hΛ−(1+s)
h ∇h as

preconditioner, before we use B s
h defined in (3.17) as preconditioner. These experiments are

to validate Theorem 3.2 and Corollary 3.1, respectively.
Where applicable, the numerical tests are conducted using preconditioned conjugate method,

with random initial guess. Convergence of the iterations are reached when the relative pre-
conditioned residual, i.e. (B rk ,rk )

(B r0,r0)
, where rk is the k-th residual and B is the preconditioner, is

below a given tolerance.
Note that in the following, all fractional powers of matrices are constructed by full spectral

decomposition, requiring the solution of large generalized eigenvalue problems (see [25] for
details). As such, the preconditioned iterative methods will not be computationally optimal,
but the tests are designed only to validate the theoretical bounds on the condition numbers.
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s
N 208 800 3136 12416

0.0 20(4.9) 21(4.9) 21(4.9) 21(4.9)
0.1 20(4.6) 21(4.9) 22(5.2) 23(5.5)
0.2 22(5.6) 24(6.2) 25(6.8) 27(7.4)
0.3 24(6.6) 26(7.5) 27(8.1) 28(8.6)
0.4 26(8.0) 28(8.7) 29(9.2) 29(9.6)
0.5 27(9.2) 30(9.8) 30(10.3) 30(10.5)
0.6 29(10.4) 31(10.9) 31(11.3) 31(11.5)
0.7 30(11.6) 32(12.1) 32(12.4) 32(12.5)
0.8 31(13.0) 33(13.4) 33(13.5) 33(13.7)
0.9 32(14.5) 35(14.9) 34(14.9) 34(15.0)
1.0 33(16.1) 36(16.5) 36(16.6) 35(16.5)

TABLE 1. Numerical results preconditioningΛs
h . Table show number of conju-

gate gradient interations until reaching relative error tolerance 10−9. Estimated
condition numbers are shown inside parentheses. N = dimVh and J = 4 in all
tests.

This problem will not be encountered if B s
h is used as part of a preconditioner for trace prob-

lems as presented in the introduction.

5.1. Preconditioning for Λs
h . In the first set of numerical experiments we consider the fol-

lowing problem: For a given f ∈Vh and s ∈ [0,1], find σ ∈Vh so that

(5.2) Λs
hσ = f .

We takeΩ= [0,1]2 ⊂R2, andTh is a uniform partition ofΩ. We take Vh to be the lowest order
Raviart-Thomas space relative to the mesh Th . We solve the linear system arising from (5.2)
using preconditioned conjugate gradient method, with B s

div ,h given by (4.6) as preconditioner.
The results can be seen in Table 1, from which we see that both iteration counts and condition
numbers stay bounded independently of the dimension of Vh , in accordance with Theorem
4.1.

5.2. Auxiliary space preconditioner. We now consider (5.1) on the same computational do-
main as in the previous set of experiments. That is, Ω = [0,1]2, and Th is a uniform trian-
gulation of Ω. For the discrete space Sh we use piecewise constants relative to Th . In Table
2, we can view the calculated condition number of ∇∗hΛ−(1+s)

h ∇h As
h , as well as the condition

number expected from Theorem 3.2. The results show both uniform h-independence and is
in good agreement with the theory.

Finally, we solve (5.1) using preconditioned conjugate gradient method, with B s
h =∇∗hB1+s

div ,h∇h

defined in (3.17) as preconditioner. B1+s
div ,h is chosen as the additive multigrid operator proposed

in section 4, with Vh as the lowest order Raviart-Thomas space relative to Th . The results can
be viewed in Table 3. Again, we see that both iteration counts and estimated condition num-
bers stay reasonably bounded, in agreement with Corollary 3.1, although a slight increase
becomes pronounced as s approaches 0.
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s
N 512 2048 8192 β−2(1+s)

−1.0 1.000 1.000 1.000 1.000
−0.9 1.005 1.005 1.005 1.005
−0.8 1.010 1.010 1.010 1.010
−0.7 1.015 1.015 1.015 1.015
−0.6 1.020 1.020 1.020 1.020
−0.5 1.025 1.025 1.025 1.025
−0.4 1.030 1.030 1.030 1.030
−0.3 1.035 1.035 1.035 1.035
−0.2 1.040 1.040 1.040 1.041
−0.1 1.045 1.045 1.045 1.046
0.0 1.050 1.051 1.051 1.051

TABLE 2. Numerical results for exact auxiliary space preconditioner. Ta-
ble show condition number of ∇∗hΛ−(1+s)

h ∇hAs
h . N is dimension of Sh . The

rightmost column shows expected condition number from Theorem 3.2 with
β−2 = 1.051.

s
N 128 512 2048 8192

−1.0 18(4.3) 19(4.4) 20(4.6) 21(4.6)
−0.9 17(3.7) 19(3.7) 19(3.7) 19(3.7)
−0.8 17(3.2) 18(3.2) 18(3.2) 18(3.2)
−0.7 17(2.9) 18(2.9) 18(2.9) 18(3.0)
−0.6 17(2.8) 18(3.0) 18(3.1) 19(3.1)
−0.5 18(3.2) 19(3.3) 20(3.4) 20(3.6)
−0.4 19(3.6) 21(3.8) 21(3.8) 22(4.4)
−0.3 19(4.0) 22(4.2) 22(4.2) 24(5.3)
−0.2 20(4.5) 23(4.8) 24(5.1) 26(6.2)
−0.1 21(5.1) 25(5.4) 26(6.1) 28(7.2)
0.0 22(5.8) 27(6.2) 28(7.4) 30(8.3)

TABLE 3. Numerical results for preconditioning As
h with B s

h given by (3.17).
Table show number of conjugate gradient interations until reaching error tol-
erance 10−10. Estimated condition numbers are shown inside parentheses. N is
dimension of Sh . J = 4 in all tests.
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UNIFORM PRECONDITIONERS FOR THE MIXED DARCY PROBLEM

TRYGVE BÆRLAND†, KENT-ANDRE MARDAL†, AND TRAVIS THOMPSON‡

ABSTRACT. Preconditioners for porous media flow problems in mixed form are frequently
based on H(div) preconditioners rather than the pressure Schur complement. We show that
when the permeability, K, is small the pressure Schur complement must also be addressed for
H(div)-based preconditioners. The proposed approach is based on the operator precondition-
ing framework; thus, we construct the preconditioner by considering the mapping properties
of the continuous operator, where the main challenge is a K -uniform inf-sup condition.

1. INTRODUCTION

In this paper we will consider the mixed formulation of the Darcy problem of the form

1
K

u−∇p = f, in Ω,(1)

∇ ·u = g , in Ω.(2)

equipped with suitable boundary conditions. The variables u and p represent the fluid flux
and pressure, respectively, and K denotes the permeability. Our purpose is to address effi-
cient preconditioners exhibiting robustness for K ∈ (0,1). We employ the operator precon-
ditioning framework [15]; the general framework approach is predicated on establishing a
well-posedness result for the continuous problem in K−weighted Sobolev spaces. For linear
systems of the form �

A BT

B 0

��
x
y

�
=
�

c
d

�
,

there are, generally speaking, two common approaches for constructing block-diagonal pre-
conditioners; one may utilize a Schur complement for the first unknown or, alternatively, the
second unknown. That is, the structural options for the preconditioner are:

�
A−1 0

0 (BA−1BT )−1

�
and

�
(A+BT B)−1 0

0 X ?

�
.

The first approach results in three distinct unit sized eigenvalues [16] for any 0 < K <∞.
On the other hand, to the authors knowledge, only partial explanations have been offered
for the second approach for the mixed Darcy problem. In [1], H(div) preconditioners were
constructed and applied to (1)-(2) in the case K = 1 for which X coincides with the inverse
of a potentially diagonalized mass matrix. The same authors have also developed multilevel
methods for weighted H(div) spaces in [2]; however, to our knowledge, the pressure Schur
complement for the case 0 < K � 1 has not be rigorously treated. The case with X = −γ I ,
and the first block equal to (A+ 1

γ BT B)−1, was investigated in [3, 11] and used successfully for
the Oseen and Maxwell type problems, respectively. We here offer an alternative lower-right
block where X = I−1+(BT A−1B)−1 and show that, for a mixed Darcy problem, this approach
is robust with respect to K .

As a single-physics problem (1)-(2) the case K → 0 is not particularly interesting; a simple
scaling resolves the problem of a vanishing K . However, in a multi-physics setting, solution

†DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, BLINDERN, OSLO, 0316 NORWAY
‡DEPT. OF NUM. ANAL. AND SCI. COMPUT. SIMULA RESEARCH LABORATORY. FORNEBU, NORWAY
E-mail addresses: trygveba@math.uio.no, kent-and@math.uio.no, tthompson@simula.no.
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algorithms are often constructed via decomposition into single-physics subproblems. Requir-
ing a certain scaling of one of the problems may have a negative effect on the scaling of the
other subproblems.

In the current work we construct block preconditioners based on the operator precondi-
tioning framework introduced, briefly, in [1] and reviewed in [15]. Our preconditioners will,
in the continuous case, take the following form:

B =
�
(K−1I −∇∇·)−1 0

0 (I )−1+(−K∆)−1

�
.

It will be shown that preconditioners based on B are robust with respect to both the mesh
size and the permeability K . We mention that this preconditioner and the analysis is closely
related to [14] where the time-dependent Stokes problem was considered.

2. PRELIMINARIES

LetΩ be a bounded Lipschitz domain inRn, n = 2,3. Then L2 = L2(Ω) denotes the Sobolev
space of square integrable functions, whereas H k =H k(Ω) denotes the space of functions with
all derivatives up to order k in L2. The space L2

0 contains functions g ∈ L2 with zero mean
value. Vector valued functions, and Sobolev spaces of vector valued functions, are denoted by
boldface. The space H(div) contains functions in L2 with divergence in L2 and the subspace of
functions u ∈H0(div) are those with zero normal trace. The notation (·, ·) is used for the L2

inner product of both scalar and vector fields as well as the duality paring between a space X
and its dual space X ′. The norm corresponding to the L2 inner product is expressed with the
canonical double-bar ‖·‖L2 . For α > 0, a fixed real value, the notation ‖ f ‖2

αL2 = α2 ( f , f ) and
αL2 = αL2(Ω) signifies the usual L2 space equipped with the corresponding weighted inner
product denoted by ( f , g )α = α

2 ( f , g ).
For two Hilbert spaces, X and Y , we denote byL (X ,Y ) the space of bounded linear maps

from X to Y , with the standard operator norm

‖T ‖L (X ,Y ) = sup
x∈X

‖T x‖Y

‖x‖X

, T ∈L (X ,Y ).

In the subsequent analysis we employ both the intersection and sum of two Hilbert spaces
X and Y . These composite spaces are formally defined as follows: Let X and Y be two Hilbert
spaces both contained in some larger Hilbert space; the intersection space X∩Y and sum space
X +Y are also Hilbert spaces and their respective norms are

‖z‖2
X∩Y = ‖z‖2

X + ‖z‖2
Y

and
‖z‖2

X+Y = inf
z=x+y

x∈X ,y∈Y

‖x‖2
X + ‖y‖2

Y .

In addition, if X ∩Y is dense in both X and Y , then

(3) (X +Y )′ =X ′ ∩Y ′.

Lastly, suppose that {X1,X2} and {Y1,Y2} are pairs of Hilbert spaces such that both elements
of each pairing are contained in a larger Hilbert space. If T is a bounded linear operator from
Xi to Yi for i = 1, 2, then

(4) T ∈L (X1 ∩X2,Y1 ∩Y2)∩L (X1+X2,Y1+Y2),

and in particular

‖T ‖L (X1+X2,Y1+Y2)
≤max

�
‖T ‖L (X1,Y1)

,‖T ‖L (X2,Y2)

�
.

Cf. [4, Ch. 2] for a further discussion of summation and intersection spaces.
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3. CONTINUOUS STABILITY AND PRECONDITIONING

The weak formulation of (1)-(2) reads: Find u ∈V , p ∈Q such that

a(u,v)+ b (v, p) = (f,v), ∀v ∈V,(5)
b (u, q) = (g , q), ∀q ∈Q.(6)

where,
a(u,v) =

�
K−1u,v

�
and b (u, q) = (∇ ·u, q) .

The corresponding coefficient matrix reads,

(7) A
�
u
p

�
:=
�

K−1 −∇
div 0

��
u
p

�
=
�

f
g

�

Below we show that the Brezzi conditions are satisfied uniformly in K in the following spaces
for u and p, respectively:

V=K−1/2L2 ∩H0(div), Q = L2
0+K1/2H 1 ∩ L2

0.

We remark that the below analysis is similar to [14], although the Sobolev spaces and bilinear
forms involved are different. Let

Z= {u ∈V | b (u, q) = 0, ∀q ∈Q}.
Then clearly,

a(z,z) = ‖z‖2
K−1/2L2 = ‖z‖2

V, ∀z ∈ Z
and hence coercivity of a(·, ·) is established. Furthermore, the boundedness of a(·, ·) follows
from

a(u,v) = (u,v)K−1/2 ≤ ‖u‖V‖v‖V ∀u,v ∈V.
The boundedness of b follows from a decomposition argument. Let q = q0+ q1, q0 ∈ L2 and
q1 ∈H 1 then

b (v, q) = (∇ ·v, q0)− (v,∇q1)
= (∇ ·v, q0)−

�
K−1/2v,K1/2∇q1

�
≤ ‖∇ ·v‖L2 ‖q0‖L2 + ‖v‖K−1/2L2 ‖∇q1‖K1/2L2

≤ ��
K−1v,v

�
+ ‖∇ ·v‖2

L2

� 1
2
�‖q0‖2

L2 +(K∇q1,∇q1)
� 1

2 .

Taking the infimum over all decompositions of q yields the desired bound.
The uniform inf-sup condition is established by a similar construction as in [14]; however,

since the spaces involved are different a full argument is included for completeness. The ar-
gument proceeds by utilizing the Bogovskĭi operator (cf. [7, 8, 10]) which, on a star shaped
domain with respect to an open ball B , has the following explicit form:

Sg (x) =
∫
Ω

g (y)K(x− y,y)dy, where K(z,y) =
z
|z|n

∫ ∞
|z|
θ(y+ r

z
|z|)r

n−1dr.

Here θ ∈C∞0 (Rn), with

suppθ⊂ B , and
∫
Rn

θ(x) = 1.

The Bogovskĭi operator S is a right inverse of the divergence operator and has the mapping
properties

S ∈L (L2
0,H

1
0)∩L (H−1,L2), and divSg = g .

It follows directly for g ∈ L2
0 that

‖Sg‖H0(div) ≤ ‖Sg‖H1
0
≤CS ‖q‖L2

0

for some constant CS. Hence,

S ∈L (L2
0,H0(div))∩L (K−1/2H−1,K−1/2L2),
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for any K > 0. From (4) and (3), we then have that

S ∈L (K−1/2H−1 ∩ L2
0,K−1/2L2 ∩H0(div)) =L (Q ′,V),

and
‖Sg‖V ≤CS ‖q‖Q ′ .

The inf-sup condition follows directly. Take p ∈Q then

sup
v∈V

(∇ ·v, p)
‖v‖V

≥ sup
g∈Q ′

(divSg , p)
‖Sg‖V

≥ C−1
S sup

g∈Q ′

(g , p)
‖g‖Q ′

= C−1
S ‖p‖Q .

With K -uniform stability established, the framework put forth in [15] suggests that an ef-
ficient preconditioner for A can be constructed from preconditioners for the operators re-
alizing the V and Q-norm. Preconditioners for the V inner product are well-known, c.f.
e.g. [2, 12, 13]. For the Q-norm, we begin by recalling that

(8) ‖q‖2
Q = inf

φ∈H 1∩L2
0

�‖q −φ‖+K ‖∇φ‖2� ,

where the infimum on the right hand side is attained with φ satisfying

(φ,ψ)+K (∇φ,∇ψ) = (q ,ψ) , ∀ψ ∈H 1 ∩ L2
0.

That is, φ= (I −K∆)−1q and q −φ=−K∆φ. The Q-norm can then be characterized by

‖q‖2
Q = ((−K∆)φ, (I −K∆)φ)

=
�
(−K∆)(I −K∆)−1q , q

�
.

Thus, the canonical preconditionerBQ : Q ′→Q is given by

BQ =
�
(−K∆)(I −K∆)−1�−1 = I +(−K∆)−1.

Hence, the operatorB : V′×Q ′→V×Q defined as

(9) B =
�
(K−1I −∇div)−1 0

0 I +(−K∆)−1

�

provides a robust preconditioner for (5)-(6) in the sense that the condition number ofBA is
bounded uniformly in K .

4. DISCRETE STABILITY AND PRECONDITIONING

In this section we describe the construction of a preconditioner for discretizations based
on Brezzi-Douglas-Marini (BDM) and Raviart-Thomas (RT) elements [5, 17]. The discrete
approach reflects many aspects of the continuous setting of section 3. However, due to the the
discontinuous polynomial nature of the pressure elements, we first define a discrete H 1-norm
to establish the Q-norm in the discrete case.

Let Th be a shape regular simplicial mesh defined on the bounded, Lipschitz domain Ω and
let r ≥ 0. Let Vh be the H(div)-conforming discrete space given by either the RT elements
of order r or the BDM elements of order r + 1. Define Qh to be the usual corresponding
space of discontinuous, piecewise polynomials of order r . Consider the discrete mixed Darcy
problem given by: find uh ∈Vh and ph ∈Qh such that

a(uh ,v)+ b (v, ph) = (f,v), ∀v ∈Vh ,(10)
b (uh , q) = (g , q), ∀q ∈Qh .(11)

4



The discrete Qh -norm will be defined in terms of a discrete gradient which is the negative
L2-adjoint of the div operator on Vh . First,∇h : Qh →Vh is defined by

(12) (∇h q ,v) =− (q , divv) .

It is well-known, [6, 9], that with these particular choices of Qh and Vh , there is an h-independent
constant β> 0 such that

(13) sup
v∈Vh

(q , divv)
‖v‖H(div)

≥β‖q‖L2

for every q ∈ Qh . It follows that ∇h is injective and we can define the discrete H 1-norm on
Qh via

‖q‖1,h = ‖∇h q‖L2 .

We denote the space H 1
h as the set Qh equipped with the norm ‖·‖1,h and the space L2

h as the
set Qh equipped with the usual L2-norm. With these notations in hand, the discrete analogue
of the Q-norm, given by (8), is defined as

(14) ‖q‖2
Qh
= inf

φ∈Qh

�‖q −φ‖2
L2 +K ‖φ‖2

1,h

�
.

Defining H0,h(div) and L2
h analogously to L2

h , we may then say that

Vh =K−1/2L2
h ∩H0,h(div) and Qh = L2

h +K1/2H 1
h ,

and it is under these norms that we will show K -robust stability of (10)-(11).
Boundedness and coercivity of a(·, ·) and boundedness of b (·, ·) follows from the same ar-

guments put forth in section 3. Verifying a K -independent inf-sup condition will therefore
conclude the argument. To accomplish this a left-inverse of∇h will be constructed, satisfying
appropriate bounds, allowing for a similar argument to that of section 3 for the operator S.

Let Zh denote the discrete kernel of the div operator; i.e. the set of vh ∈Vh with

(15) (divvh , qh) = 0, ∀ qh ∈Qh

From (13) it follows [9] that ∇h : Qh → Z⊥h is a linear bijection. Furthermore every v ∈ Vh
can be uniquely decomposed as

(16) v=∇h r + ṽ,

where r ∈ Qh , with ∇h r ∈ Z⊥h , and ṽ ∈ Zh . Since the spaces considered for Vh satisfy the
relation divVh ⊂Qh it follows that div ṽ= 0, for every ṽ ∈ Zh , and the decomposition (16) is
orthogonal with respect to both the H(div) and L2 inner products.

We now define the lifting operator Θh : Vh → Qh by Θhv = r , according to (16). It is
evident that Θh∇h is the identity operator on Qh and that Θh ṽ= 0 for all ṽ ∈ Zh . Moreover,
the inf-sup condition (13) and the H(div)-orthogonality of (16) implies that

‖Θhv‖ ≤β−1 sup
w∈Vh

(Θhv, divw)
‖w‖H(div)

=β−1 sup
w∈Vh

(∇hΘhv,w)
‖w‖H(div)

≤β−1 sup
w∈Vh

(v,w)
‖w‖H(div)

=β−1 ‖v‖H0,h (div)′ ,
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which means that Θh ∈ L (H0,h(div)′, L2
h). From the L2-orthogonality of (16) we also have

that ‖Θhv‖1,h ≤ ‖v‖, which implies that Θh ∈L (L2
h , H 1

h ). From these bounds on Θh , together
with (4), we deduce that

(17) Θh ∈L
�
K1/2L2

h +H0,h(div)′,K1/2H 1
h + L2

h

�
=L (V′h ,Qh).

Since Θh∇h is the identity on Qh , we get from (17) that for every q ∈Qh ,

‖q‖Qh
≤C ‖∇h q‖V′

h

=C sup
v∈Vh

(q , divv)
‖v‖Vh

,

where C =max(1,β−1) and is thus independent of h.
We now consider the construction of suitable preconditioners for (10)-(11) that are robust

in both K and h. If we defineAh as the coefficient matrix characterizing the left-hand side of
(10)-(11), the above analysis implies thatAh is a homeomorphism from Vh ×Qh to its dual.
Moreover, the norms on Ah and its inverse are bounded independently of K and h. Using
an argument analogous to the one we made to defineB in section 3, we define the canonical
preconditioner Bh : V′h ×Q ′h →Vh ×Qh as

(18) Bh =
��

K−1Ih −∇h div
�−1 0

0 Ih +(−K div∇h)
−1

�
.

For simplicitly, a small liberty has been taken for the notation of Ih in (18). Specifically, Ih in
the top left block of (18) signifies the identity Ih : Vh →Vh while the use of the same symbol
in the bottom right block signifies the identity on Qh ; recall that the discrete gradient, ∇h , is
defined by (12).

5. NUMERICAL EXPERIMENTS

LetΩ be a triangulation of the unit square such that the unit square is first divided in N×N
squares of length h = 1/N . Each square is then divided into two triangles. Below we will con-
sider the case of homogeneous Dirichlet conditions for the flux and compute the eigenvalues
of the preconditioned system. As order optimal multilevel methods for both H(div) and H 1

problems are well-known we consider preconditioners based simply on exact inversion. It was
shown in [18] that the following local−∆h operator is spectrally equivalent with−div∇h for
RT and BDM elements of arbitrary order:

(−∆h p, q) =
∑

T∈Th

∫
T
∇p · ∇q d x +

∑
Ei∈EI

∫
Ei

[p][q]d S +
∑

Ei∈ED

∫
Ei

pq d S.

Here, Th is a triangulation of the domain Ω; internal faces are signified by the set EI whereas
ED denotes faces at the boundary associated with a Dirichlet condition. In Table 1 we compare
the two different preconditioners:

B1 =
�
( 1

K I −∇∇·)−1 0
0 (I )−1+(−K∆)−1

�
andB2 =

�
( 1

K I −∇∇·)−1 0
0 (I )−1

�
.

We would argue thatB2 represents a natural choice with the exception of employing oper-
ator conditioning combined with intersection and sum spaces. Table 1 shows thatB1 yields
robust results for any K ∈ (0,1).

Numerical experiments confirm that the robust behavior applies also to Neumann condi-
tions and BDM elements.

6



K\h 2−2 2−3 2−4 2−5

B1

1 1.1 1.1 1.1 1.1
10−2 2.2 2.1 2.1 2.1
10−4 3.1 3.3 3.0 2.9
10−6 3.2 3.6 3.8 3.9
10−8 3.6 3.6 3.8 3.9

B2

1 1.0 1.1 1.1 1.1
10−2 6.0 6.0 6.1 6.1
10−4 500 505 507 507
10−6 4.9 · 104 4.9 · 104 4.9 · 104 4.9 · 104

10−8 4.7 · 106 5.1 · 106 4.5 · 106 4.7 · 106

TABLE 1. Condition numbers for the operatorsB1A andB2A.
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