
Kent-André Mardal

Finite Elements in Computational
Mechanics

January 22, 2025

Springer Nature

Contents

1 Elliptic equations and the finite element method 3
1.1 Introduction . 3
1.2 The finite element method in a nutshell . 5
1.3 Brief remark on the strange world of partial differential

equations and their discretizations . 9
1.4 Further reading . 11
1.5 Exercises . 11

2 Crash course in Sobolev Spaces . 13
2.1 Introduction . 13
2.2 Norms, inner products and Sobolev spaces 13
2.3 Spaces and sub-spaces, norms and semi-norms 16
2.4 Examples of Functions in Different Spaces 16
2.5 Sobolev Spaces and Polynomial Approximation 18
2.6 Eigenvalues and Finite Element Methods 18
2.7 Negative and Fractional Norms . 21
2.8 Exercises . 25

3 Discretization of a convection-diffusion problem 27
3.1 Introduction . 27
3.2 Streamline diffusion/Petrov-Galerkin methods 32
3.3 Well posedness of the continuous problem 35
3.4 Error estimates . 38
3.5 Exercises . 39

v

vi Contents

4 Stokes problem . 41
4.1 Introduction . 41
4.2 Finite Element formulation . 44
4.3 Examples of elements . 48
4.4 Stabilization techniques to circumvent the Babuska-Brezzi

condition . 50
4.5 Exercises . 51

5 Efficient Solution Algorithms: Iterative methods and
Preconditioning . 53
5.1 The simplest iterative method: the Richardson iteration 54
5.2 The idea of preconditioning . 60
5.3 Krylov methods and preconditioning . 62
5.4 Exercises . 72

6 Linear elasticity and singular problems . 77
6.1 Introduction . 77
6.2 The operator ∇ · ε and rigid motions . 79
6.3 Locking . 84

Index . 89

References . 91

Contents 1

Not included

• Liftint
• Hdiv, Hcurl elements
• frac(A) observation
• time-discretization
• least squares
• adjoint

Chapter 1

Elliptic equations and the finite element
method

1.1 Introduction

As a starting point for the finite element method, let us consider the mother
problem of partial differential equations, the elliptic problem: Find the solution
u of the problem

−∇ · (k∇u) = f in Ω, (1.1)

u = g on ∂ΩD, (1.2)

k
∂u

∂n
= h on ∂ΩN . (1.3)

We include here both Dirichlet (1.2) and Neumann (1.3) boundary conditions
and assume ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅.

Unusual concepts like weak or variational formulations, trial and test func-
tions, Sobolev spaces etc. show up in the finite element methods and many
find them troublesome and strange. To motivate these concepts we start with
some ”philosophical” considerations that lead to three challenges which will be
resolved by the finite element method. The first challenge: the above equation
is the so-called strong formulation and its interpretation is (directly) that:
For every point x ∈ Ω the equation

−∇ · (k(x)∇u(x)) = f(x), (1.4)

3

4 1 Elliptic equations and the finite element method

should be valid. Hence, u, f are functions and if we assume that f is a continu-
ous function then u is continuous with two derivatives that are also continuous.
More formally, f ∈ C(Ω) directly leads to the requirement that u ∈ C2(Ω).
In general it is however well known, and we will meet many such solutions in
this course, that u 6∈ C2(Ω) are also solutions to (1.1).

In this book, it will be sentral to compare differential operators with matri-
ces in order to build intuition. So, let us assume that (1.4) is somehow (ignoring
the boundary conditions for now) represented as a linear system, i.e.,

Au = b. (1.5)

This leads us to our second challenge: In order to have a linear system with
a well-defined solution we at least need the same number of equations and
unknows, ie. A is a RN×N matrix and u, f are vectors in RN . How can we make
numerical methods that ensure the same number of equations and uknowns?
Is it ensured by the definition in (1.4). A direct comparison of (1.4) and (1.5)
would for instance be to assume that i’th equation of Au = b correspond to the
point xi in (1.4). Hence,

∑
j Aijuj = bi corresponds to −∇ · (k(xi)∇u(xi)) =

f(xi). Then the number of equations (or number of rows in A) is N and equals
the number of points in the domain. Assuming for instance that Ω is the unit
square with n internal points (as the boundary is currently ignored) in both the
x− and y−direction gives that N = n2. With a slight abuse of notation 1, we
may then enumerate the points as xi = (xj , yk) where i = j(N−1)+k for i, j ∈
(1, N). In order to get a non-singular matrix, the number of unknowns should
equal the number of equations. We do obtain N uknowns if we assume that for
every point in the domain we have an unknown uk = u(xi, yj), k = j+i(N−1)
corresponding to the equations −∇·(k∇u(xi, yj) = f(xi, yj). It is however not
clear how to make sense of u outside the points (xi, yj). Furtermore, an obvious
mathematical question is then to what extent we recover u ∈ C2(Ω), f ∈
C(Ω) as n tends to ∞ with this construction. In general, we will not recover
the conditions set by the strong formulation, although a proper mathematical
explanation of this is beyond the scope of this book. The reader is refered to
[5] for a more detailed explanation of the strong formulation.

Computationally, we need to resort to finite resolutions and this brings us
to our third challenge. In Figure 1.1 we see triangulation of domain outside a
swimming dolphin. We can immediately see that it will be difficult to formulate
a finite difference approach on this domain as the nodal points does not form

1 We avoid bold face notation for coordinates.

1.2 The finite element method in a nutshell 5

Fig. 1.1 An example mesh of a swimming dolphin.

squares. Hence, a stencil like:

u(x+ h, y) + u(x, y + y)− 4u(x, y) + u(x− h, y) + u(x, y − h)

h2
(≈ ∆u)

will not be able to exploit the triangulation. Furhermore, the stencil will cross
∂Ω.

1.2 The finite element method in a nutshell

The finite element method (FEM) resolves these three challenges by combining
1) the so-called weak formulations to reduced the demands of differentiability of
the solution with 2) trial and test functions constructed by the same apporach

6 1 Elliptic equations and the finite element method

leads to N ×N matrices and 3) a structured approach of integration adjusted
to the underlying meshes. Hence, before we start with FEM, let us recap some
fundamental results of calculus that will lead to the weak formulation, the
Gauss-Green’s lemma:∫

Ω

−∇ · (k∇u)v dx =

∫
Ω

(k∇u) · ∇v dx−
∫
∂Ω

k
∂u

∂n
v ds. (1.6)

Here, we have two functions: the trial function u and the test function v,
and we are able to move derivatives from u to v and hence reduce the strict
requirement of u ∈ C2(Ω).

Next, we apply the boundary conditions. That is, for the Dirichlet condition
(1.2) we already know that u = g. Hence, u is not an unknown on that part
of the boundary. Therefore, it is common to let v = 0 at ∂ΩD. Hence, by
inserting the Neumann condition, we obtain that∫

∂Ω

k
∂u

∂n
vds =

∫
∂ΩD

k
∂u

∂n
vds+

∫
∂ΩN

k
∂u

∂n
vds (1.7)

=

∫
∂ΩD

k
∂u

∂n
0 +

∫
∂ΩN

hvds (1.8)

As such we arrive at the weak formulation of the elliptic problem: Find u such
that ∫

Ω

k∇u · ∇vdx =

∫
Ω

fvdx+

∫
ΩN

hvds, ∀v (1.9)

Here, we assume as mentioned that u = g and v = 0 on ∂ΩD. We will come
back to what ∀v means in a more precise sense later.

At this point we summarize how to obtain a weak formulation as this will
be done over and over again throughout this book. First, we multiply with
a test function and integrate. Second, the Gauss-Green lemma (or a similar
lemma) is applied and third we apply the boundary conditions.

Remark 1.1 We remark that the test function v plays the role of pointwise
evaluation in the strong formulation (1.4). That is, we evaluate (or test) the
above equation with respect to many different test functions, which in the pre-
vious formulation corresponded to many different points. We notice that if the
test functions are Dirac delta functions then we recover the strong formula-
tion. However, since but we cannot differentiate the δ functions (in a classical
sense) we are only able to evaluate the left-hand side of (1.6). Using the δ
functions as test functions and avoiding the use of Gauss-Green is often called
the collocation method and is used e.g. by the Runge-Kutta method. However,

1.2 The finite element method in a nutshell 7

Fig. 1.2 One finite element basis function /pyramide function associated with a par-
ticular node.

it is seldom used for FEM because of the high demands on the differentiability
on u.

The second challenge was to find formulations that lead to linear systems
with N × N matrices. The finite element method directly exploits the weak
formulation. The finite element method resolves this challenge by employing
the same basis functions for both the trial and the test functions. That is, let
the trial and test functions be as follows:

u =

N∑
j=1

ujNj and v = Ni, i = 1 . . . N. (1.10)

Here {Ni} is a set of basis functions that needs to be choosen somehow. Fur-
thermore, as the third challenge above mentioned, the basis functions needs
to adapt to a mesh. There are many possibilities and one may target the basis
function to the problem at hand. The simplest basis function is shown in Fig
1.2. Here, the basis function is chosen as linear functions / pyramides associ-
ated with the nodal points, so-called Lagrange element of first order. There
are many, many different finite element functions to choose from and they
have different properties. Lists of common and unusual elements available in
FEniCS can be found in [7].

The FEM problem is obtained by inserting (1.10) into the weak formulation
(1.9), i.e. ∫

Ω

k∇
∑
j

ujNj · ∇Nidx =

∫
Ω

fNidx+

∫
ΩN

hNids ∀j.

We pull the summation out:

8 1 Elliptic equations and the finite element method∑
j

uj

∫
Ω

k∇Nj · ∇Nidx =

∫
Ω

fNidx+

∫
ΩN

hNids ∀j.

Hence, with

Aij =

∫
Ω

k∇Nj · ∇Nidx,

bi =

∫
Ω

fNidx+

∫
ΩN

hNids

we arrive at the following linear system

Au = b

The following code solves the Poisson problem on the unit square consisting
of 32× 32 rectangles, where each rectangle is divided in two and f = 1, g = 0
and h = x. Dirichlet conditions are set for y = 0 and Neumann for the rest of
∂Ω.

from dolfin import *

Create mesh and define function space

mesh = UnitSquareMesh(32, 32)

V = FunctionSpace(mesh , "Lagrange", 1)

Define Dirichlet boundary (x = 0 or x = 1)

def boundary(x): return x[0] < DOLFIN_EPS

Define boundary condition

u0 = Constant(0.0)

bc = DirichletBC(V, g, boundary)

Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(1)

g = Expression("x[0]")

a = inner(grad(u), grad(v))*dx

L = f*v*dx + h*v*ds

Compute solution

u = Function(V)

solve(a == L, u, bc)

Save solution in VTK format

1.3 Brief remark on the strange world of partial differential equations and their discretizations9

file = File("poisson.pvd")

file << u

1.3 Brief remark on the strange world of partial
differential equations and their discretizations

A fundamental property in both the theory of partial differential equations and
numerical analysis is the concept of well-posedness. In Hadamard’s definition
a problem is well-posed if three conditions are met for the given input. The
solution 1) exists, is 2) unique and 3) depends continuously on the input.
Hence, if we have two inputs to our problem, b1 and b2 then the difference
between the unique solutions u1 and u2 should be bounded by the differences
between b1 and b2. In terms of linear algebra, we directly obtain well-posedness
if A is a non-singular matrix. That is, we directly obtain

A(u1 − u2) = (b1 − b2)

which leads to

‖(u1 − u2)‖ = ‖A−1(b1 − b2)‖ ≤ ‖A−1‖‖b1 − b2‖

and
‖(b1 − b2)‖ = ‖A(u1 − u2)‖ ≤ ‖A‖‖u1 − u2‖

Hence, the difference between the solutions u1 and u2 in the sense ‖u1−u2‖ is
bounded continuously both above and below by the difference in data in the
sense ‖b1 − b2‖. In the above, the norms have not been specified, but then,
in a finite dimentional setting, all vector norms are equivalent. These rather
simple observations on the linear algebra level does not easily extend to the
continuous setting of partial differential equations. For instance, an intuitive
estimate given a point x is

‖(u1(x)− u2(x))‖ ≤ ‖(−∆)−1‖‖f1(x)− f2(x)‖

This bound is not trivial and in many cases not valid on the continuous level.
Here,

Instead, it is useful to consider the square roots for matrices and operators.
We will make it more precise later, but let us assume that we have a concept

10 1 Elliptic equations and the finite element method

of A1/2 and A−1/2. The, as we will see, the notion

‖A1/2(u1 − u2)‖ = ‖A−1/2(b1 − b2)‖

is extraordinary useful and gives precise estimates in a wide range of situations.
We remark that ∆ = ∇ · ∇ and as such ∇ can be interpreted as some kind
of square root of ∆. There are however some difficulties that arise with this
notion. Let us consider the problem in 1D, using FDM. The stencil is then

−uxx ≈ Au =
−ui+1 + 2ui+1 − ui−1

h2
,

where ui = u(xi) and xi = ih, i = 0, . . . , N . For a mesh with two internal
degrees of freedom, the corresponding matrix is

A =
1

h2

(
2 −1
−1 2

)
Let B

Bu =
1

h

(
1 −1 0
0 1 −1

)
Obviously,

A = BTB

However, B is not unique. Furthermore, it is a rectangular matrix that makes it
difficult to invert it. In particular, it has a one-dimentional kernel consisting of
the constant vector c(1, 1, 1)T , where c ∈ R. Likewise in the continuous setting
∇ has a kernel of constant functions. However, and withough any mathematical
rigour, the correct and actually quite practical variant of the above estimate
is

‖∇(u1 − u2)‖ = ‖∇−1(f1 − f2)‖

We do however need to make sense of the ∇−1. For now it is enough to think
of it as some form of antiderivative. Here, for instance u1, f1 may be the ac-
tual continuous solution and input data whereas the u2, f2 are the numerical
solution and input data.

1.5 Exercises 11

1.4 Further reading

There are several execellent and highly recommended books on the finite ele-
ment method [1, 2].

1.5 Exercises

Exercise 1.1 Consider the problem −u′′(x) = x2 on the unit interval with

u(0) = u(1) = 0. Let u =
∑N
k=1 uk sin(πkx) and v = sin(πlx) for l = 1, . . . N ,

for e.g. N = 10, 20, 40. and solve (1.9). What is the error in L2 and L∞.

Exercise 1.2 Consider the same problem as in the previous exercise, but using
Bernstein polynomials. That is, the basis for the Bernstein polynomial of order
N on the unit interval is Bk(x) = xk(1 − x)N−k for k = 0, . . . , N . Let u =∑N
k=0 ukBk(x) and v = Bl(x) for 0 = 1, . . . N and solve (1.9). What is the

error in L2 and L∞ in terms of N for N = 1, 2, . . . 10. Remark: Do the basis
functions satisfy the boundary conditions? Should some of them be removed?

Exercise 1.3 Consider the same problem as in the previous exercise, but with
−u′′(x) = sin(kπx) for k = 1 and k = 10.

Exercise 1.4 Consider the same problem as in the previous exercise, but with
the finite element method in for example FEniCS, FEniCSx or Firedrake, using
Lagrange method of order 1, 2 and 3.

Chapter 2

Crash course in Sobolev Spaces

2.1 Introduction

Sobolev spaces are fundamental in the analysis of partial differential equa-
tions and also for finite element methods. Many books provide a detailed and
comprehensive analysis of these spaces that in themselves deserve significant
attention if one wishes to understand the foundation that the analysis of par-
tial differential equations relies on. In this chapter we will however not provide
a comprehensive mathematical description of these spaces, but rather try to
provide insight into their use.

We will here provide the definition of these spaces. Further we will show
typical functions, useful for finite element methods, that are in some but not
all spaces. We also show how different norms capture different characteristics.

2.2 Norms, inner products and Sobolev spaces

Sobolev spaces are generalizations of Lp spaces. Lp spaces are function spaces
defined as follows. Let u be a scalar valued function on the domain Ω, which
for the moment will be assumed to be the unit interval (0, 1). Then the Lp

norm on Ω is:

‖u‖p = (

∫ 1

0

|u|p dx)1/p.

Lp(Ω) consists of all functions for which ‖u‖p <∞. Sobolev spaces generalize
Lp spaces by also including the derivatives. On the unit interval, the W k,p

13

14 2 Crash course in Sobolev Spaces

norm is defined as

‖u‖p,k = (

∫
Ω

∑
i≤k

|(∂u
∂x

)i|p dx)1/p. (2.1)

Then the Sobolev space W p
k (Ω) consists of all functions with ‖u‖p,k <∞. W p

k

is a so-called Banach space - that is a complete 1 normed vector space. The
corresponding semi-norm, that only include the highest order derivative is

|u|p,k = (

∫
Ω

∑
i=k

|(∂
∂x

)iu|p dx)1/p. (2.2)

The case p = 2 is special in the sense that not only a norm is defined but also an
inner product. The Banach space then forms a Hilbert space and these named
with H in Hilbert’s honor. That is Hk(Ω) = W 2,k(Ω). The inner product
between the functions u and v is:

(u, v)k =
∑
i≤k

∫
Ω

(
∂u

∂x
)i(
∂v

∂x
)i dx.

For the most part, we will employ the two spaces L2(Ω) and H1(Ω), but
also H2 and H−1 will be used. The difference between the norm in L2(Ω) and
H1(Ω) is illustrated in the following example.

Norms of sin(kπx)

Consider the functions uk = sin(kπx) on the unit interval. Figure 2.1 shows
the function for k = 1 and k = 10. Clearly, the L2 and L7 behave similarly in
the sense that they remain the same as k increases. On the other hand, the
H1 norm of uk increases dramatically as k increases. The following code shows
how the norms are computed using FEniCS.

from dolfin import *

N = 10000

mesh = UnitInterval(N)

V = FunctionSpace(mesh , "Lagrange", 1)

1 We will not go into the details of complete spaces in this book, but remark that the
space of real numbers is complete, while the space of rational numbers is not.

2.2 Norms, inner products and Sobolev spaces 15

for k in [1, 100]:

u_ex = Expression("sin(k*pi*x[0])", k=k)

u = project(u_ex , V)

L2_norm = sqrt(assemble(u** 2*dx))

print "L2 norm of sin(%d pi x) %e " % (k, L2_norm)

L7_norm = pow(assemble(abs(u)**7*dx), 1.0/7)

print "L7 norm of sin(%d pi x) %e " % (k, L7_norm)

H1_norm = sqrt(assemble(u*u*dx+inner(grad(u), grad(u))*dx))

print "H1 norm of sin(%d pi x) %e" % (k, H1_norm)

k\norm L2 L7 H1

1 0.71 0.84 2.3
10 0.71 0.84 22
100 0.71 0.84 222

Table 2.1 The L2, L7, and H1 norms of sin(kπx) for k=1, 10, and 100.

Fig. 2.1 Left picture shows sin(πx) on the unit interval, while the right picture shows
sin(10πx).

16 2 Crash course in Sobolev Spaces

2.3 Spaces and sub-spaces, norms and semi-norms

The Sobolev space with k derivatives in L2(Ω) was denoted by Hk(Ω). The
subspace of Hk with k−1 derivatives equal to zero at the boundary is denoted
Hk

0 (Ω). For example, H1
0 (Ω) consists of all functions in H1 that are zero at

the boundary. Similarly, we may also defined a subspace H1
g (Ω) which consists

of all functions in H1(Ω) that are equal to the function g on the boundary.
The norm ‖ · ‖p,k defined in (2.1) is a norm which means that ‖u‖p,k > 0

for all u 6= 0. On the other hand | · |p,k is a semi-norm, meaning that |u|p,k ≥ 0
for all u. The space H1(Ω) is defined by the norm

‖u‖1 = (

∫
Ω

u2 + (∇u)2 dx)1/2

and contains all functions for which ‖u‖1 ≤ ∞. Often we consider subspaces
of H1 satisfying the Dirichlet boundary conditions. The most common space
is denoted H1

0 . This space contains all functions in H1 that are zero on the
boundary. The semi-norm | · |1 defined as

|u|1 = (

∫
Ω

(∇u)2 dx)1/2

is a norm on the subspace H1
0 . In fact, as we will see later, Poincare’s lemma

ensures that ‖ · ‖1 and | · |1 are equivalent norms on H1
0 (see Exercise 2.5).

2.4 Examples of Functions in Different Spaces

The above functions sin(kπx) are smooth functions that for any k are infinitely
many times differentiable. They are therefore members of any Soblev space.

On the other had, the step function in upper picture in Figure 2.2 is dis-
continuous in x = 0.2 and x = 0.4. Obviously, the function is in L2(0, 1), but
the function is not in H1(0, 1) since the derivative of the function consists of
Dirac’s delta functions 2 that are ∞ at x = 0.2 and −∞ in x = 0.4.

2 The Dirac’s delta function δx is 0 everywhere except at x where it is ∞ and∫
Ω
δx dx = 1. Hence, Dirac’s delta function is in L1(Ω) but not in L2(Ω).

2.4 Examples of Functions in Different Spaces 17

The hat function in the lower picture in Figure 2.2 is a typical first order
finite element function. The function is in both L2(0, 1) and H1(0, 1) (see
Exercise 2.3). In general, functions in Hq(0, 1) are required to be in Cq−1(0, 1),
where Ck(0, 1) is the class where the k’th derivatives exist and are continuous
on the unit interval.

Remark 2.1 In Ck(Ω) a function and its k derivatives can be evaluated at any
given point in Ω and the result will be a finite value. How about functions
in Hk(Ω)? In general only functions in Hk(Ω) for k ≥ 2 allow pointwise
evaluation. The exact relationship between continous functions and Sobolev
spaces are covered by the Sobolev Embedding Theorem, which will not be
covered in this book. Anyways, in L2(Ω) or H1(Ω) we should make note and
be careful when we perform pointwise evaluations.

Fig. 2.2 The upper picture shows a piecewise function, discontinuous at x = 0.2 and
x = 0.2, while the lower picture shows a linear function that is continuous.

18 2 Crash course in Sobolev Spaces

2.5 Sobolev Spaces and Polynomial Approximation

From Taylor series approximation we know that f(x+h) may be approximated
by f(x) and a polynomial in h that depends on the derivatives of f . To be
precise,

|f(x+ h)− Ph,kf(x)| ≤ O(hk+1).

Here, Ph,kf(x) is the following polynomial of degree k in h,

Ph,kf(x) = f(x) +

k∑
n=1

f (n)(x)

n!
hn.

where f (n) denotes the n’th derivative of f .
In general, approximation by Taylor series bears strong requirement on

the smoothness of the solution which needs to be differentiable in a point-
wise sense. However, in Sobolev spaces we have the very useful approximation
property

|u− Pmu|k,p ≤ Chm−k|u|m,p for k = 0, . . . ,m and p ≥ 1.

This property is used extensively in analysis of finite element methods and is
called the Bramble-Hilbert lemma for k ≥ 2. The case k = 1 was included by a
special interpolation operator by Clement, the so-called Clement interpolant.
For proof, see e.g. [1, 2].

2.6 Eigenvalues and Finite Element Methods

It is well known that for −∆ on the unit interval (0, 1), the eigenvalues and
eigenvectors are (πk)2 and sin(πkx), k = 1, . . . ,∞, respectively. It is natural
to expect that the eigenvalues in the discrete setting approximate the contin-
uous eigenvalues such that the minimal eigenvalue is ≈ π2, while the maximal
eigenvalue is ≈ π2/h2, where k = 1/h is the largest k that may be represented
on a mesh with element size h. Computing the eigenvalues of the finite element
stiffness matrix in FEniCS as 3,

3 We use the assemble system function to enforce the Dirichlet condition in symmetric
fashion.

2.6 Eigenvalues and Finite Element Methods 19

A = assemble_system(inner(grad(u), grad(v))*dx, Constant(0)*v*

dx, bc)

reveals that the eigenvalues are differently scaled. In fact, the minimal eigen-
value is ≈ π2h and that the maximal eigenvalue is ≈ π2/h. The reason is that
the finite element method introduces a mesh-dependent scaling due to the fact
that it is a variational method. Specifically, if we want to approximate a f as∑
j fjNj we notice that we may calculate fj in a variational sense as follows:∫

Ω

∑
j

fjNjNi dx =

∫
Ω

fNi dx

Hence, we notice here that, we are solving a linear system

Mf = b, with Mij =

∫
Ω

NjNi dx and bi =

∫
Ω

fNi dx

Both {fi}i and {bi}i are representations of f , often called the nodal and dual
representations [9]. They scale differently since the entries of the mass matrix
scale with the size of the elements in the mesh.

To estimate the continuous eigenvalues, we need to make sure that both the
left- and right-hand sides are in the same representation, either nodal or dual.
Hence, we consider the generalized eigenvalue problem,

Ax = λMx, (2.3)

where A is the above mentioned stiffness matrix and M is the mass matrix (or
the finite element identity matrix)

M = assemble_system(inner(u*v*dx , Constant(0)*v*dx , bc)

Figure 2.3 shows the eigenvalues of −∆, A, and (2.3) based on the following
code:

from dolfin import *

import numpy

from scipy import linalg , matrix

def boundary(x, on_boundary): return on_boundary

for N in [100 , 1000]:

mesh = UnitIntervalMesh(N)

V = FunctionSpace(mesh , "Lagrange", 1)

20 2 Crash course in Sobolev Spaces

u = TrialFunction(V)

v = TestFunction(V)

bc = DirichletBC(V, Constant(0), boundary)

A, _ = assemble_system(inner(grad(u), grad(v))*dx , Constant(

0)*v*dx , bc)

M, _ = assemble_system(u*v*dx, Constant(0)*v*dx, bc)

AA = matrix(A.array ())

MM = matrix(M.array ())

k = numpy.arange(1, N, 1)

eig = pi **2*k**2

l1, v = linalg.eigh(AA)

l2, v = linalg.eigh(AA, MM)

print "l1 min , max ", min(l1), max(l1)

print "l2 min , max ", min(l2), max(l2)

print "eig min , max ", min(eig), max(eig)

import pylab

pylab.loglog(l1[2:], linewidth=5) # exclude Dirichlet values

pylab.loglog(l2[2:], linewidth=5) # exclude again

pylab.loglog(eig , linewidth=5)

pylab.legend(["eig(A)", "eig(A,M)", "cont. eig"], loc="upper

left")

pylab.show()

Fig. 2.3 A log-log plot of the eigenvalues of A, M−1A, and −∆.

2.7 Negative and Fractional Norms 21

From Figure 2.3 we see that that the eigenvalues of (2.3) and −∆ are close,
while the eigenvalues of A is differently scaled. We remark that we excluded
the two smallest eigenvalues in the discretized problems as they correspond to
the Dirichlet conditions.

2.7 Negative and Fractional Norms

As will be discussed more thoroughly later, −∆ is a symmetric positive oper-
ator and can be thought of as a infinite dimensional matrix that is symmetric
and positive. It is also know from Riesz representation theorem that if u solves
the problem

−∆u = f, in Ω,

u = 0, on ∂Ω

then
|u|1 = ‖f‖−1. (2.4)

This implicitly define the H−1 norm, although the definition then requires the
solution of a Poisson problem. For example, in the previous example where
uk = sin(kπx), we have already estimated that |uk|1 = πk√

2
and therefore

‖uk‖−1 = |(−∆)−1uk|1 = 1√
2kπ

.

Let us now generalize these considerations and consider a matrix (or differ-
ential operator) A which is symmetric and positive. A has positive and real
eigenvalues and defines an inner product which may be represented in terms
of eigenvalues and eigenfunctions. Let λi and ui be the eigenvalues and eigen-
functions such that

Aui = λiui

Then, x may be expanded in terms of the eigenfunctions ui as x =
∑
i ciui,

where ci = (x, ui), and we obtain

(x, x)A = (Ax, x) = (A
∑
i

ciui,
∑
j

cjuj) = (
∑
i

λiciui,
∑
j

cjuj)

Because A is symmetric, the egenfunctions ui are orthogonal to each other
and we may choose a normalized basis such that (ui, uj) = δij . With this
normalization, we simply obtain

22 2 Crash course in Sobolev Spaces

‖x‖2A = (x, x)A = (Ax, x) = (A
∑
i

ciui,
∑
j

cjuj) =
∑
i

λic
2
i

A generalization of the A−inner product (with corresponding norm) to a
Aq−inner product that allow for both negative and franctional q is then as
follows

‖x‖2A,q = (x, x)A,q =
∑
i

λqi c
2
i . (2.5)

Clearly, this definition yields that |uk|1 = πk√
2

and ‖uk‖−1 = 1√
2kπ

, as above.

As mentioned in Section 2.6, care has to be taken in finite element methods
if the discrete eigenvalues are to correspond with the continuous eigenvalues.
We will therefore detail the computation of negative and fractional norms in
the following. Let λi and ui be the eigenvalues and eigenvectors of the following
generalized eigenvalue problem

Aui = λiMui (2.6)

and let U be the matrix with the eigenvectors as columns. The eigenvalues are
normalized in the sense that

UTMU = I

where I is the identity matrix. We obtain

UTAU = Λ or A = MUΛ(MU)T ,

where Λ is a matrix with the eigenvalues λi on the diagonal. Hence also in
terms of the generalized eigenvalue problem (2.6) we obtain the A−norm as

‖x‖2A = xTMUΛ(MU)Tx

and we may define fractional and negative norms in the same manner as (2.5),
namely that

‖x‖2A,M,q = xTMUΛq(MU)Tx.

Defining the negative and fractional norms in terms of eigenvalues and eigen-
vectors is convenient for small scale problems, but it is an expensive procedure
because eigenvalue problems are computationally demanding. It may, however,
be tractable on subdomains, surfaces, or interfaces of larger problems. We also
remark that there are other ways of defining fractional and negative norms.
For example, one often used technique is via the Fourier series, c.f. e.g. [11].

2.7 Negative and Fractional Norms 23

These different definitions do in general not coincide, in particular because
they typically have different requirement on the domain or boundary condi-
tions. One should also be careful when employing the above definition with
integer q > 1, in particular because boundary conditions requirements will
deviate from standard conditions in the Sobolev spaces for q > 1.

Computing the H1, L2, and H−1 norms

Let as before Ω = (0, 1) and uk = sin(πkx). Table 5.1 shows the H1, L2,
and H−1 norms as computed with (2.5) with q = 1, 0, and −1, respectively.
Comparing the computed norms with the norms L2 and H1 norms computed
in Example 2.2, we see that the above definition (2.5) reproduces the H1 and
L2 norms with q = 1 and q = 0, respectively. We also remark that while the
H1 norm increases as k increases, the H−1 norm demonstrates a corresponding
decrease. Below we show the code for computing these norms.

k\norm H1, q = 1 L2, q = 0 H−1, q = −1
1 2.2 0.71 0.22
10 22 0.71 0.022
100 222 0.71 0.0022

Table 2.2 The L2, L7, and H1 norms of sin(kπx) for k=1, 10, and 100.

from dolfin import *

from numpy import matrix , diagflat , sqrt

from scipy import linalg , random

def boundary(x, on_boundary): return on_boundary

mesh = UnitIntervalMesh(200)

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

bc = DirichletBC(V, Constant(0), boundary)

A, _ = assemble_system(inner(grad(u), grad(v))*dx , Constant(0)

*v*dx, bc)

M, _ = assemble_system(u*v*dx, Constant(0)*v*dx, bc)

AA = matrix(A.array ())

MM = matrix(M.array ())

24 2 Crash course in Sobolev Spaces

l, v = linalg.eigh(AA, MM)

v = matrix(v)

l = matrix(diagflat(l))

for k in [1, 10, 100]:

u_ex = Expression("sin(k*pi*x[0])", k=k)

u = interpolate(u_ex , V)

x = matrix(u.vector ().array())

H1_norm = pi*k*sqrt(2)/2

print "H1 norm of sin(%d pi x) %e (exact) " % (k,

H1_norm)

H1_norm = sqrt(assemble(inner(grad(u), grad(u))*dx))

print "H1 norm of sin(%d pi x) %e (|grad(u)|^2) " % (k,

H1_norm)

H1_norm = sqrt(x*AA*x.T)

print "H1 norm of sin(%d pi x) %e (x A x’) " % (k,

H1_norm)

W = MM.dot(v)

H1_norm = sqrt(x*W*l*W.T*x.T)

print "H1 norm of sin(%d pi x) %e (eig) " % (k,

H1_norm)

print ""

L2_norm = sqrt(2)/2

print "L2 norm of sin(%d pi x) %e (exact) " % (k,

L2_norm)

L2_norm = sqrt(assemble(u** 2*dx))

print "L2 norm of sin(%d pi x) %e |u|^2 " % (k,

L2_norm)

L2_norm = sqrt(x*MM*x.T)

print "L1 norm of sin(%d pi x) %e (x M x’) " % (k,

L2_norm)

W = MM.dot(v)

L2_norm = sqrt(x*W*l** 0*W.T*x.T)

print "L2 norm of sin(%d pi x) %e (eig) " % (k,

L2_norm)

print ""

Hm1_norm = sqrt(2)/2/k/pi

print "H^-1 norm of sin(%d pi x) %e (exact) " % (k,

Hm1_norm)

Hm1_norm = sqrt(x*W*l**-1*W.T*x.T)

2.8 Exercises 25

print "H^-1 norm of sin(%d pi x) %e (eig) " % (k,

Hm1_norm)

Hm1_norm = sqrt(x*MM*linalg.inv(AA)*MM*x.T)

print "H^-1 norm of sin(%d pi x) %e (x inv(A) x’) " % (k,

Hm1_norm)

Remark 2.2 Norms for |q| > 1.
The norm (2.5) is well defined for any |q| ¿ 1, but will not correspond to the
corresponding Sobolev spaces.

Remark 2.3 The standard definition of a dual norm
Let (·, ·)A be an inner product over the Hilbert space V . The norm of the dual
space is then defined by

‖f‖A∗ = sup
v∈V

(f, v)

(v, v)A
.

For example, the H−1 norm is defined as

‖f‖−1 = sup
v∈H1

(f, v)

(v, v)1
.

2.8 Exercises

Exercise 2.1 Compute theH1 and L2 norms of a random function with values
in (0, 1) on meshes representing the unit interval of with 10, 100, and 1000 cells.

Exercise 2.2 Compute the H1 and L2 norms of sin(kπx) on the unit interval
analytically and compare with the values presented in Table 2.2.

Exercise 2.3 Compute the H1 and L2 norms of the hat function in Picture
2.2.

Exercise 2.4 Consider the following finite element function u defined as

u =

{ 1
hx−

1
h (0.5− h), x = (0.5− h, 0.5)

− 1
hx+ 1

h (0.5− h), x = (0.5, 0.5 + h)
0, elsewhere

26 2 Crash course in Sobolev Spaces

That is, it corresponds to the hat function in Figure 2.2, where u(0.5) = 1 and
the hat function is zero every where in (0, 0.5− h) and (0.5 + h, 1). Compute
the H1 and L2 norms of this function analytically, and the L2, H1 and H−1

norms numerically for h = 10, 100 and 1000.

Exercise 2.5 Let Ω = (0, 1) then for all functions in H1(Ω) Poincaré’s in-
equality states that

|u|L2 ≤ C|∂u
∂x
|L2

Use this inequality to show that the H1 semi-norm defines a norm equivalent
with the standard H1 norm on H1

0 (Ω).

Chapter 3

Discretization of a convection-diffusion
problem

3.1 Introduction

This chapter concerns convection-diffusion equations of the form:

−µ∆u+ v · ∇u = f in Ω

u = g on ∂Ω

Here v is typically a velocity, µ is the diffusivity, and u is the unknown variable
of interest. We assume the Dirichlet condition u = g on the boundary, while f
is a source term.

The problem is a singular perturbation problem. That is, the problem is
well-posed for µ > 0 but becomes over–determined as µ tends to zero. For
µ = 0 the Dirichlet conditions should only be set on the inflow domain Γ ; that
is, where n · v < 0 for the outward unit normal n.

For many practical situations µ > 0, but small in the sense that µ � |v|.
For such problems, the solution will often be similar to the solution of the
reduced problem with µ = 0 except close to the non-inflow boundary ∂Ω\Γ .
Here, there will typically be a boundary layer exp (‖v‖∞x/µ). Furthermore,
discretizations often shows unphysical oscillations starting at this boundary
layer.

The next example shows a 1D convection diffusion problem resulting in
non-physical oscillations due to the use of a standard Galerkin approximation.

Standard Galerkin approximation

27

28 3 Discretization of a convection-diffusion problem

Consider the following 1D problem convection diffusion problem, where v =
−1 for simplicity:

−ux − µuxx = 0, (3.1)

u(0) = 0, u(1) = 1. (3.2)

The analytical solution is:

u(x) =
e−x/µ − 1

e−1/µ − 1
.

Hence, for µ → 0 , both e−x/µ and e−1/µ will be small and u(x) ≈ 1 unless
x ≈ 0. However, close to the outflow boundary at x = 0, there will be a
boundary layer where u has exponential growth.

We solve the problem with a standard Galerkin method using linear first
order Lagrange elements. To be specific, the variational problem is:
Find u ∈ H1

(0,1) such that∫ 1

0

−uxv + µuxvx dx = 0, ∀v ∈ H1
(0,0).

Here, H1
(0,1) contains functions u ∈ H1 with u = 0 at x = 0 and u = 1 and

x = 1, while H1
(0,0) contains functions that are zero both at x = 0 and x = 1.

We consider a µ = 0.01, a relatively large µ, to enable us to see the differences
on a relatively coarse mesh.

Both the numerical and analytical solutions are shown in Figure 3.1. Clearly,
the numerical solution is polluted by non-physical oscillations on the coarse
mesh with 10 elements, while a good approximation is obtained for 100 ele-
ments.

Finally, we show the complete code for this example:

from dolfin import *

for N in [10, 100]:

mesh = UnitInterval(N)

V = FunctionSpace(mesh , "CG", 1)

u = TrialFunction(V)

v = TestFunction(V)

mu_value = 1.0e-2

3.1 Introduction 29

Fig. 3.1 Solution of the convection diffusion problem obtained with 10 and 100 el-
ements. The left figure obtained on a mesh with 10 elements shows wild oscillations,
while the mesh with 100 elements demonstrate a nicely converged solution.

mu = Constant(mu_value)

f = Constant(0)

h = mesh.hmin()

a = (-u.dx(0)*v + mu*u.dx(0)*v.dx(0))*dx

L = f*v*dx

u_analytical = Expression("(exp(-x[0]/e) - 1)/ (exp(-1/%e) -

1)" % (mu_value , mu_value))

def boundary(x):

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

bc = DirichletBC(V, u_analytical , boundary)

U = Function(V)

solve(a == L, U, bc)

U_analytical = project(u_analytical , V)

import pylab

pylab.plot(U.vector ().array())

pylab.plot(U_analytical.vector ().array ())

pylab.legend(["Numerical Solution", "Analytical Solution"])

pylab.show()

�

30 3 Discretization of a convection-diffusion problem

To understand Example 3.1 we first remark that the discretization corre-
sponds to the following central finite difference scheme:

− µ

h2
[ui+1 − 2ui + ui−1]− v

2h
[ui+1 − ui−1] = 0, i = 1, . . . , N − 1

u0 = 0, uN = 1

Above, we kept v as a variable such that we may discuss the directionality
of upwinding in terms of the convection. Clearly, if µ = 0 then the scheme
reduces to

− v

2h
[ui+1 − ui−1] = 0, i = 1, . . . , N − 1

u0 = 0, uN = 1

Here, it is clear that ui+1 is coupled to ui−1, but not to ui. Hence, this scheme
allow for an alternating sequence of ui+1 = ui−1 = . . ., while ui = ui−2 = . . .
resulting in oscillations.

One cure for these oscillations is upwinding. That is, instead of using a
central difference scheme, we employ the following difference scheme:

du

dx
(xi) =

1

h
[ui+1 − ui] if v < 0,

du

dx
(xi) =

1

h
[ui − ui−1] if v > 0.

Using this scheme, oscillations will disappear. The approximation will however
only be first order.

There is a relationship between upwinding and artificial diffusion. If we
discretize ux with a central difference and add diffusion as ε = h/2∆ we get

ui+1 − ui−1

2h
central scheme, first order derivative

+
h

2

−ui+1 + 2ui − ui−1

h2
central scheme, second order derivate

=
ui − ui−1

h
upwind scheme

Hence, upwinding is equivalent to adding artificial diffusion with ε = h/2; that
is, in both cases we actually solve the problem

−(µ+ ε)uxx + vux = f.

3.1 Introduction 31

using a central difference scheme.
Finite difference upwinding is difficult to express using finite elements meth-

ods, but it is closely to adding some kind of diffusion to the scheme. The next
example shows the solution of the problem in Example 3.1 with artificial dif-
fusion added.

Stabilization using artificial diffusion

Consider again the following 1D problem convection diffusion problem:

−ux − µuxx = 0, (3.3)

u(0) = 0, u(1) = 1. (3.4)

We solve the problem with a standard Galerkin method using linear first
order Lagrange elements as before, but we add artificial diffusion. To be spe-
cific, the variational problem is:
Find u ∈ H1

(0,1) such that∫ 1

0

−uxv + (µ+ βh)uxvx = 0, ∀v ∈ H1
(0,0),

where β = 0.5 corresponds to the finite difference scheme with artificial diffu-
sion mentioned above. Below is the code for the changed variational form:

beta_value = 0.5

beta = Constant(beta_value)

f = Constant(0)

h = mesh.hmin()

a = (-u.dx(0)*v + mu*u.dx(0)*v.dx(0) + beta*h*u.dx(0)*v.dx(0

))*dx

Figure 3.2 shows the solution for 10 and 100 elements when using artifi-
cial diffusion stabilization. Clearly, the solution for the coarse grid has im-
proved dramatically since the oscillations have vanished and the solution ap-
pear smooth. It is, however, interesting to note that the solution for the fine
mesh is actually less accurate than the solution in Fig 3.2 for the corresponding
fine mesh. The reason is that the scheme is now first order, while the scheme
in Example 3.1 is second order.

32 3 Discretization of a convection-diffusion problem

Fig. 3.2 Solution of the convection diffusion problem obtained with 10 and 100 ele-
ments using artificial diffusion to stabilize.

3.2 Streamline diffusion/Petrov-Galerkin methods

In the previous section we saw that artificial diffusion may be added to con-
vection diffusion dominated problems to avoid oscillations. The diffusion was,
however, added in a rather ad-hoc manner. Here, we will see how diffusion may
be added in a consistent way; that is, without changing the solution as h→ 0.
This leads us to streamline diffusion using the Petrov-Galerkin method. Our
problem reads:
Find u such that

−µ∆u+ v · ∇u = f in Ω,

u = g on ∂Ω.

The weak formulation reads:
Find u ∈ H1

g such that

a(u,w) = b(w) ∀ w ∈ H1
0 ,

where

a(u,w) =

∫
Ω

µ∇u · ∇w dx+

∫
Ω

v · ∇uw dx,

b(w) =

∫
Ω

fw dx.

3.2 Streamline diffusion/Petrov-Galerkin methods 33

Here, H1
g is the subspace of H1 where the trace equals g on the boundary ∂Ω.

The standard Galerkin discretization is:
Find uh ∈ Vh,g such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh,0. (3.5)

Here, Vh,g and Vh,0 are the subspaces with traces that equals g and 0 on the
boundary, respectively.

Adding artificial diffusion to the standard Galerkin discretization, as was
done in Example 3.1, can be done as:
Find uh ∈ Vh,g such that

a(uh, vh) +
h

2
(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh,0.

Let
τ(u, vh) = a(uh, vh)− (f, vh).

Then the truncation error is first order in h; that is,

τ(u) = sup
v∈Vh,v 6=0

τ(u, vh)

‖v‖V
∼ O(h).

Hence, the scheme is consistent in the sense that

lim
h→0

τ(u)→ 0.

However, it is not strongly consistent in the sense that τ(u) = 0 for every
discretization, which is what is obtained with the Galerkin method due to
Galerkin-orthogonality:

τ(u, vh) = a(uh, vh)− (f, vh) = a(uh − h, vh) = 0 ∀vh ∈ Vh.

The Streamline diffusion/Petrov-Galerkin method introduces a strongly
consistent diffusion by employing alternative test functions. Let us therefore
assume that we have a space of test functions Wh. Abstractly, the Petrov-
Galerkin method appears very similar to the Galerkin method, that is:
Find uh ∈ Vh,g such that

a(uh, vh) = (f, vh) ∀vh ∈Wh,0.

34 3 Discretization of a convection-diffusion problem

Again, Vh,g and Wh,0 are the subspaces with traces that equals g and 0 on
the boundary, respectively. Notice that the only difference from the standard
Galerkin formulation is that test and trial functions differ.

On matrix form, the standard Galerkin formulation reads:

Aij = a(Ni, Nj) =

∫
Ω

µ∇Ni · ∇Nj dx+

∫
Ω

v · ∇NiNj dx, (3.6)

while for the Petrov Galerkin method, we use the test functions Lj :

Aij = a(Ni, Lj) =

∫
Ω

µ∇Ni · ∇Lj dx+

∫
Ω

v · ∇NiLj dx

A clever choice of Lj will enable us to add diffusion in a consistent way. To
make sure that the matrix is still quadratic, we should however make sure that
the dimension of Vh and Wh are equal.

Let Lj be defined as Lj = Nj + βh v · ∇Nj . Writing out the matrix Aij in
(3.6) now gives

Aij = a(Ni, Nj + βh v · ∇Nj)

=

∫
Ω

µ∇Ni · ∇(Nj + βh v · ∇Nj) dx+

∫
Ω

v · ∇Ni · (Nj + βh v · ∇Nj) dx

=

∫
Ω

µ∇Ni · ∇Nj dx+

∫
Ω

v · ∇NiNj dx︸ ︷︷ ︸
standard Galerkin

+ βh

∫
Ω

µ∇Ni · ∇(v · ∇Nj) dx︸ ︷︷ ︸
=0 third order term, for linear elements

+βh

∫
Ω

(v · ∇Ni)(v · ∇Nj) dx︸ ︷︷ ︸
Artificial diffusion in v direction

Notice that also the righthand side changes

b(Lj) =

∫
Ω

fLj dx =

∫
Ω

f(Nj + βh v · ∇Nj) dx

Thus, both the matrix and the righthand side are changed such that artificial
diffusion is added in a consistent way.

We summarize this derivation by stating the SUPG problem. Find uh,sd ∈
H1
g such that

asd(u,w) = bsd(w) ∀w ∈ H1
0 , (3.7)

where

3.3 Well posedness of the continuous problem 35

asd(u,w) =

∫
Ω

µ∇u · ∇w dx+

∫
Ω

v · ∇uw dx

+ βh

∫
Ω

(v · ∇u)(v · ∇w) dx+ βhµ
∑
e

∫
Ωe

−∆u(v · ∇w) dx,

bsd(w) =

∫
Ω

fw dx+ βh

∫
Ω

fv · ∇w dx.

3.3 Well posedness of the continuous problem

Before we discuss error estimates of the discrete problem, we briefly describe
the properties of the continuous problem.

Theorem 3.1 Lax-Milgram theorem
Let V be a Hilbert space, a(·, ·) be a bilinear form, L(·) a linear form, and let
the following three conditions be satisfied:

1. a(u, u) ≥ α‖u‖2V , ∀u ∈ V ,

2. a(u, v) ≤ C‖u‖V ‖v‖V , ∀u, v ∈ V ,

3. L(v) ≤ D‖v‖V , ∀v ∈ V .

Then the problem: Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V.

is well-posed in the sense that there exists a unique solution with the following
stability condition

‖u‖V ≤
C

α
‖L‖V ∗ .

Condition (1) is often refereed to as coersivity or positivity, while (2) is called
continuity or boundedness. Condition 3 simply states that the right-hand side
should be in the dual space of V .

In the following we will use Lax-Milgram’s theorem to show that the
convection-diffusion problem is well-posed. The Lax-Milgram’s theorem is well-
suited since it does not require symmetry of the bilinear form.

36 3 Discretization of a convection-diffusion problem

We will only consider the homogeneous Dirichlet conditions in the current
argument 1. From Poincare’s lemma we know that

‖u‖0 ≤ CΩ |u|1.

Using Poincare, it is straightforward to show that the semi-norm

|u|1 = (

∫
(∇u)2 dx)1/2

and the standard H1 norm

‖u‖1 = (

∫
(∇u)2 + u2 dx)1/2

are equivalent. Hence, on H1
0 the | · |1 is a norm equivalent the H1-norm.

Furthermore, this norm will be easier to use for our purposes.
For the convection-diffusion problem, we will consider two cases 1) incom-

pressible flow, where ∇ · v = 0 and 2) compressible flow, where ∇ · v 6= 0. Let
us for the begin with the incompressible case. Further, let

b(u,w) =

∫
Ω

µ∇u∇w dx

cv(u,w) =

∫
Ω

v · ∇uw dx

a(u,w) = a(u,w) + b(u,w)

Furthermore, assuming for the moment that u ∈ H1
g , w ∈ H1

0 , we have

cv(u,w) =

∫
Ω

v · ∇uw dx

= −
∫
Ω

v · ∇w udx−
∫
Ω

∇ · v uw dx︸ ︷︷ ︸
=0 (incompressibility)

+

∫
Γ

uw v · n︸ ︷︷ ︸
=0 (Dirichlet conditions)

= −cv(w, u).

1 Has the argument for reducing non-homogeneous Dirichlet conditions to homoge-
neous Dirichlet conditions been demonstrated elsewhere?

3.3 Well posedness of the continuous problem 37

and therefore cv(·, ·) is skew-symmetric. Letting w = u we obtain that
cv(u, u) = −cv(u, u), which means that cv(u, u) = 0. Therefore, the first con-
dition in Lax-Milgram’s theorem (1) is satisfied:

a(u, u) = b(u, u) ≥ µ|u|21.

The second condition, the boundedness of a (2), follows by applying Cauchy-
Schwartz inequality if we assume bounded flow velocities ‖v‖∞.

a(u, v) =

∫
Ω

µ∇u∇w dx+

∫
Ω

v∇uw dx

≤ µ|u|1|w|1 + ‖v‖∞|u|1‖w‖0
≤ (µ+ ‖v‖∞CΩ)|u|1|v|1.

The third condition simply means that the right-hand side needs to be in
the dual space of H1

g . Hence, we obtain the following bounds by Lax-Milgram’s
theorem:

|u|1 ≤
µ+ CΩ‖v‖∞

µ
‖f‖−1.

Notice that for convection-dominated problems CΩ‖v‖∞ � µ and the stability
constant will therefore be large.

In the case where ∇·v 6= 0, we generally obtain that cv(u, u) 6= 0. To ensure
that a(u, u) is still positive, we must then put some restrictions on the flow
velocities. That is, we need

|cv(u, u)| ≤ a(u, u).

If CΩ‖v‖∞ ≤ Dµ with D < 1 we obtain

a(u, u) =

∫
Ω

µ∇u∇udx+

∫
Ω

v∇uudx

≥ µ|u|1|v|1 − ‖v‖∞|u|1‖u‖0
≥ (µ− ‖v‖∞CΩ)|u|1|u|1
≥ (µ(1−D))|u|21.

Further, the second condition of Lax-Milgram’s theorem still applies. However,
that CΩ‖v‖∞ ≤ Dµ is clearly very restrictive compared to the incompressible
case.

We remark that the Lax-Milgram conditions in the presence of the SUPG
clearly will not be satisified in the continuous case because of the third order

38 3 Discretization of a convection-diffusion problem

term −∆u(v · ∇w). With this term, the second condition of Lax-Milgram is
not satisified with C ≤ ∞.

Finally, in order to make the term cv(u, u) skew-symmetric, it was required
that the boundary integral

∫
Γ
u2 w ·n was zero. This was a consequence of the

Dirichlet conditions. In general, this is neither needed nor possible at Neumann
boundaries. As long as

∫
Γ
u2 w ·n ≥ 0, the above argumentation is valid. From

a physical point of view this means that there is outflow at the Neumann
boundary, i.e., that w · n ≥ 0.

3.4 Error estimates

Finally, we provide some error estimates for the Galerkin method and the
SUPG method applied to the convection-diffusion equation. Central in the
derivation of both results are the following interpolation result.

Theorem 3.2 Approximation by interpolation
There exists an interpolation operator Ih : Ht+1 → Vh where Vh is a piecewise
polynomial field of order t with the property that for any u ∈ Ht(Ω)

‖u− Ihu‖m ≤ Bht+1−m‖u‖t+1.

Proof The bounds on the interpolation error is provided by the Bramble-
Hilbert lemma for t ≥ 1 and Clement’s result (the case t = 1), cf. e.g. [1, 2].�

For the Galerkin method the general and elegant result of Cea’s lemma
provide us with error estimates. Cea’s lemma applies to general conforming
approximations, i.e. when Vh ⊂ V . In our case V = H1

0 (Ω) and Vh is a finite
element subspace such as for example a discretization in terms of the Lagrange
elements (of any order). Hence, in our case ‖ ·‖V = | · |1 and the H1 semi-norm
is equivalent with the full H1 norm due to Poincare’s inequality.

Theorem 3.3 Cea’s lemma
Suppose the conditions for Lax-Milgram’s theorem is satisfied and that we solve
the linear problem (3.5) on a finite element space of order t. Then,

‖u− uh‖V ≤ C1
CB

α
ht‖u‖t+1.

Here C1 = CB
α , where B comes from the approximation property and α and C

are the constants of Lax-Milgram’s theorem.

3.5 Exercises 39

Proof The proof is straightforward and follows from the Galerkin orthogonal-
ity:

a(u− uh, v) = 0, ∀v ∈ Vh
Since Vh ⊂ V :

α‖u− uh‖2V ≤ a(u− uh, u− uh)

= a(u− uh, u− v)− a(u− uh, v − uh)

≤ C‖u− uh‖V ‖u− v‖V .

Since v − uh ∈ Vh. Furthermore, v is arbitrary and we may therefore choose
v = Ihu and obtain:

|u− uh|1 ≤
C

α
|u− Ihu|1 ≤

CB

α
ht‖u‖t,

where t− 1 is the order of the polynomials of the finite elements. �

We remark, as mentioned above, that C
α is large for convection dominated

problems and that this is what causes the poor approximation on the coarse
grid, shown in Example 3.1.

To obtain improved error estimates for the SUPG method, we introduce an
alternative norm:

‖u‖sd =
(
h‖v · ∇u‖2 + µ|∇u|2

)1/2
(3.8)

Theorem 3.4 Suppose the conditions for Lax-Milgram’s theorem is satisfied
in the Hilbert space defined by the SUPG norm (3.8) and that we solve the
SUPG problem (3.7) on a finite element space of order 1. Then,

‖u− uh‖sd ≤ Ch3/2‖u‖2

Proof The proof can be found in e.g. [4, 10]. �

3.5 Exercises

Exercise 3.1 Show that the matrix obtained from a central difference scheme
applied to the operator Lu = ux is skew-symmetric. Furthermore, show that
the matrix obtained by linear continuous Lagrange elements are also skew-

40 3 Discretization of a convection-diffusion problem

symmetric. Remark: The matrix is only skew-symmetric in the interior of the
domain, not at the boundary.

Exercise 3.2 Estimate numerically the constant in Cea’s lemma for various
α and h for the Example 3.1.

Exercise 3.3 Implement the problem u = sin(πx), and f = −αuxx − ux and
estimate numerically the constant in Cea’s lemma for various α. Compare with
the corresponding constant estimated from Example 3.1.

Exercise 3.4 Implement the problem u = sin(πx), and f = −αuxx−ux using
SUPG and estimate the constants in the error estimate obtained by both the
| · |1 and the ‖ · ‖v norms. Compare with the corresponding constant estimated
from Example 3.1.

Exercise 3.5 Investigate whether the coersivity condition holds when a ho-
mogeneous Neumann condition is assumed on the outflow. You may assume
that v · n > 0.

Exercise 3.6 Consider the eigenvalues of the operators, L1, L2, and L3, where
L1u = ux, L2u = −αuxx, α = 1.0e−5, and L3 = L1 + L2, with homogeneous
Dirchlet conditions. For which of the operators are the eigenvalues positive
and real? Repeat the exercise with L1 = xux.

Exercise 3.7 Compute the Soblev norms ‖ · ‖m of the function sin(kπx) on
the unit interval. Assume that the Soblev norm is ‖u‖m = (−∆mu, u)1/2.
What happens with negative m? You may use either Fourier transformation
or compute (eigenvalues of) powers of the stiffness matrix.

Exercise 3.8 Perform numerical experiments to determine the order of ap-
proximation with respect to various Soblev norms and polynomial orders for
the function sin(kπx) on the unit interval.

Chapter 4

Stokes problem

4.1 Introduction

The Stokes problem describes the flow of a slowly moving viscous incompress-
ible Newtonian fluid. Let the fluid domain be denotedΩ. We assume thatΩ is a
bounded domain in Rn with a smooth boundary. Furthermore, let u : Ω → Rn
be the fluid velocity and p : Ω → R be the fluid pressure. The strong form of
the Stokes problem can then be written as

−∆u+∇p = f, in Ω, (4.1)

∇ · u = 0, in Ω, (4.2)

u = g, on ∂ΩD, (4.3)

∂u

∂n
− pn = h, on ∂ΩN . (4.4)

Here, f is the body force, ∂ΩD is the Dirichlet boundary, while ∂ΩN is the Neu-
mann boundary. Furthermore, g is the prescribed fluid velocity on the Dirichlet
boundary, and h is the surface force or stress on the Neumann boundary. These
boundary condition leads to a well-posed problem provided that neither the
Dirichlet nor Neumann boundaries are empty. In case of only Dirichlet condi-
tions the pressure is only determined up to a constant, while only Neumann
conditions leads to the velocity only being determined up to a constant.

These equations are simplifications of the Navier–Stokes equations for very
slowly moving flow. In contrast to elliptic equations, many discretizations of
this problem will lead to instabilities. These instabilities are particularly visible

41

42 4 Stokes problem

as non-physical oscillations in the pressure. The following example illustrate
such oscillations.

Poiseuille flow

One of the most common examples of flow problems that can be solved ana-
lytically is Poiseuille flow. It describes flow in a straight channel (or cylinder in
3D). The analytical solution is u = (y (1− y), 0) and p = 1−x. Since the solu-
tion is know, this flow problem is particularly useful for verifying that the code
or numerical method. We therefore begin by discretizing the problem in the
simplest way possible; that is, linear continuous/Lagrange elements for both
velocity and pressure. The results is shown Figure 4.1. Clearly, the velocity
is approximated satisfactory, but the pressure oscillate widely and is nowhere
near the actual solution.

Fig. 4.1 Poiseuille flow solution obtained with linear continuous elements for both
velocity and pressure. The left figure shows the (well-represented) velocity while the
right shows the pressure (with the wild oscillations).

from dolfin import *

def u_boundary(x):

return x[0] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS or x[1]

< DOLFIN_EPS

def p_boundary(x):

return x[0] > 1.0 - DOLFIN_EPS

mesh = UnitSquare(40,40)

4.1 Introduction 43

V = VectorFunctionSpace(mesh , "Lagrange", 1)

Q = FunctionSpace(mesh , "Lagrange", 1)

#Q = FunctionSpace (mesh , "DG", 0)

W = MixedFunctionSpace([V, Q])

u, p = TrialFunctions(W)

v, q = TestFunctions(W)

f = Constant([0,0])

u_analytical = Expression(["x[1]*(1-x[1])", "0.0"])

p_analytical = Expression("-2+2*x[0]")

bc_u = DirichletBC(W.sub(0), u_analytical , u_boundary)

bc = [bc_u]

a = inner(grad(u), grad(v))*dx + div(u)*q*dx + div(v)*p*dx

L = inner(f, v)*dx

UP = Function(W)

A, b = assemble_system(a, L, bc)

solve(A, UP.vector (), b, "lu")

U, P = UP.split ()

plot(U, title="Numerical velocity")

plot(P, title="Numerical pressure")

U_analytical = project(u_analytical , V)

P_analytical = project(p_analytical , Q)

plot(U_analytical , title="Analytical velocity")

plot(P_analytical , title="Analytical pressure")

interactive ()

However, when using the second order continuous elements for the velocity
and first order continuous elements for the pressure, we obtain the perfect
solution shown in Figure 4.2.

The previous example demonstrates that discretizations of the Stokes prob-
lem may lead to, in particular, strange instabilities in the pressure. In this
chapter we will describe why this happens and several strategies to circum-
vent this behaviour.

44 4 Stokes problem

Fig. 4.2 Poiseuille flow solution obtained with quadratic continuous elements for the
velocity and linear continuous elements for the pressure. The left figure shows the
velocity while the right shows the pressure. Both the velocity and the pressure are
correct.

4.2 Finite Element formulation

Let us first start with a weak formulation of Stokes problem: Find u ∈ H1
D,g

and p ∈ L2.

a(u, v) + b(p, v) = f(v), v ∈ H1
D,0

b(q, u) = 0, q ∈ L2,

where

a(u, v) =

∫
∇u : ∇v dx,

b(p, v) =

∫
p∇ · v dx,

f(v) =

∫
f v dx+

∫
ΩN

h v ds.

Here H1
D,g contains functions in H1 with trace g on ∂ΩD. To obtain symmetry

we have substituted p̂ = −p for the pressure and is referint to p̂ as p.
As before the standard finite element formulation follows directly from the

weak formulation: Find uh ∈ Vg,h and ph ∈ Qh such that

4.2 Finite Element formulation 45

a(uh, vh) + b(ph, vh) = f(vh), ∀vh ∈ V0,h, (4.5)

b(qh, uh) = 0, ∀qh ∈ Qh. (4.6)

Letting uh =
∑n
i=1 uiNi, ph =

∑m
i=1 piLi, vh = Nj , and qh = Lj we obtain a

linear system on the form [
A BT

B 0

] [
u
p

]
=

[
f
0

]
(4.7)

Here

Aij = a(Ni, Nj) =

∫
∇Ni∇Nj dx, (4.8)

Bij = b(Li, Nj) =

∫
∇LiNj dx. (4.9)

Hence, A is n × n, while B is m × n, where n is the number of degrees of
freedom for the velocity field, while m is the number of degrees of freedom for
the pressure.

Is the system (4.7) invertible? For the moment, we assume that the subma-
trix A is invertible. This is typically the case for Stokes problem. We may then
perform blockwise Gauss elimination: That is, we multiply the first equation
with A−1 to obtain

u = A−1f −A−1BT p

Then, we then insert u in the second equation to get

0 = Bu = BA−1f −BA−1BT p

i.e we have removed v and obtained an equation only involving p:

BA−1BT p = BA−1f

This equation is often called the pressure Schur complement. The question
is then reduced to whether BA−1BT is invertible. Consider the follwing two
situations:

46 4 Stokes problem

m B

n

A

0

BT

v.s

m B

n

A

0

BT

Clearly, the right most figure is not invertible since n � m and the 0 in
the lower right corner dominates. For the left figure on might expect that the
matrix is non-singular since n� m, but it will depend on A and B. We have
already assumed that A is invertible, and we therefore ignore A−1 in BA−1BT .
The question is then whether BBT is invertible.

B

BT

=

m×m

As illustrated above, BBT will be a relatively small matrix compared to
BT and A as long as n� m. Therefore, BBT may therefore be non-singular.
To ensure that BBT is invertible, it is necessary that

kernel(BT) = 0, where B is m× n

An equvialent statement is that

max
v

(v,BT p) > 0 ∀p. (4.10)

Alternatively,

max
v

(v,BT p)

‖v‖
≥ β‖p‖ ∀p. (4.11)

which obviously may be written

max
v

(Bv, p)

‖v‖
≥ β‖p‖ ∀p. (4.12)

4.2 Finite Element formulation 47

Here, β > 0. We remark that (4.10) and (4.11) are equivalent for a finite
dimensional matrix. However, in the infinite dimentional setting of PDEs (4.10)
and (4.11) are different. Inequality (4.10) allow (v,BT p) to approach zero,
while (4.11) requires a lower bound. For the Stokes problem, the corresponding
condition is crucial:

sup
v∈H1

D,g

(p,∇ · u)

‖u‖1
≥ β‖p‖0 > 0, ∀p ∈ L2 (4.13)

Similarly, to obtain order optimal convergence rates, that is

‖u− uh‖1 + ‖p− ph‖0 ≤ Chk‖u‖k+1 +Dh`+1‖p‖`+1

where k and ` are the ploynomial degree of the velocity and the pressure,
respectively, the celebrated Babuska-Brezzi condition has to be satisfied:

sup
v∈Vh,g

(p,∇ · v)

‖v‖1
≥ β‖p‖0 > 0, ∀p ∈ Qh (4.14)

We remark that the discrete condition (4.14) does not follow from (4.13). In
fact, it is has been a major challenge in numerical analysis to determine which
finite element pairs Vh and Qh that meet this condition.

Remark 4.1 For saddle point problems on the form (4.5)-(4.6) four conditions
have to be satisfied in order to have a well-posed problem:
Boundedness of a:

a(uh, vh) ≤ C1‖uh‖Vh‖vh‖Vh , ∀uh, vh ∈ Vh, (4.15)

and boundedness of b:

b(uh, qh) ≤ C2‖uh‖Vh‖qh‖Qh , ∀uh ∈ Vh, qh ∈ Qh, (4.16)

Coersivity of a:
a(uh, uh) ≥ C3‖uh‖2Vh , ∀uh ∈ Zh, (4.17)

where Zh = {uh ∈ Vh | b(uh, qh) = 0, ∀qh ∈ Qh} and ”coersivity” of b:

sup
uh∈Vh

b(uh, qh)

‖uh‖Vh
≥ C4‖qh‖Qh , ∀qh ∈ Qh. (4.18)

48 4 Stokes problem

For the Stokes problem, (4.15)-(4.17) are easily verified, while (4.18) often is
remarkably difficult unless the elements are designed to meet this condition.
We remark also that condition (4.17) strictly speaking only needs to be valid
on a subspace of Vh but this is not important for the Stokes problem.

4.3 Examples of elements

4.3.1 The Taylor-Hoood element

The Taylor-Hood elements are quadratic for the velocity and linear for pres-
sure, i.e., the i’th basis function of the velocity and pressure are of the form

u : Ni = ai + bix+ ciy + dixy + eix
2 + fiy

2,

p : Li = ki + lix+miy.

And the basis functions are continuous across elements. For the Taylor-Hood
element we have the following error estimate:

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch2(‖u‖3 + ‖p‖2).

The generalization of the Taylor–Hood element to higher order, that is Pk −
Pk−1, satisfies the Brezzi conditions (on reasonable meshes). For the Taylor-
Hood element of higher order we have the following error estimate:

‖u− uh‖1 + ‖p− ph‖0 ≤ Chk(‖u‖k+1 + ‖p‖k).

4.3.2 The Crouzeix–Raviart element

This element is linear in velocity and constant in pressure. Hence, the i’th
basis functions are of the form:

v : Ni = ai + bix+ ciy

p : Li = ai

The v element is continuous only in the mid-point of each side, and the p
element is discontinuous. The Crouzeix-Raviart element satisifies the inf-sup

4.3 Examples of elements 49

condition, but is non-conforming because it is only continuous at the mid-
point of each element. The non-conformity does not affect the approximation
properties for the Stokes problem, but can not be used if the −∆u−∇p = f
is replaced with the more ”physically correct” −∇ · ε(u) − ∇p = f , where
ε = 1

2 (∇+∇T) is the symmetric gradient. For the Crouzeix–Raviart element
we have the following error estimate:

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch(‖u‖2 + ‖p‖1)

The element may be generalized to odd, but not even orders.

4.3.3 The P1-P0 element

The P1-P0 element is perhaps the most natural element to consider as it con-
sists of combining continuous piecewise linear functions for the velocity with
piecewise constants for the pressure. This combination often work quite well,
and this puzzled the community for quite some time. However, this combina-
tion is not inf-sup stable and oscillations in the pressure may occur.

4.3.4 The P2-P0 element

P2 − P0 element is a popular element that satisfies the Brezzi conditions. An
advantage with this approach is that mass conservation is maintained ele-
mentwise. However, the approximation properties of the pressure is one order
lower than that for the Taylor-Hood element and consequently the velocity
approximation is also formally, in general, reduced by one order, i.e.,

‖u− uh‖1 + ‖p− ph‖0 ≤ C0h
2‖u‖2 + C1h‖p‖2

The P2 − P0 element can be generalized to higher order. In fact, Pk − Pk−2,
satisfies the Brezzi conditions for k ≥ 2. Here, the pressure element Pk−2 may
in fact consist of both continuous and discontinuous polynomials. The discon-
tinuous polynomials then has the advantage of providing mass conservation,
albeit at the expence of many degrees of freedom compared with the continuous
variant.

50 4 Stokes problem

4.3.5 The Mini element

The mini element is linear in both velocity and pressure, but with one degree
of freedom added per element since it is well-known that elements that are
linear in both v and p will not satisfy the inf-sup condition. The extra degree
of freedom is in 2D constructed such it is a cubic polynomial which is zero
at all element faces. For example, on the reference element, the barycentric
coordinates x, y, and 1 − x − y are all zero at their respective faces. Hence,
the composition xy(1 − x − y) is zero at all element faces. The barycentric
coordinates can be used for this purpose on any element and also in higher
dimensions. The function is often called the bubble function as its support is
local to one element and is zero at the element faces. For the Mini element we
have the following error estimate:

‖u− uh‖1 + ‖p− ph‖0 ≤ C0h‖u‖2 + C1h
2‖p‖2

We notice that the convergence rate for the velocity is linear, hence the extra
bubbles bring stability but does not increase approximation order.

4.4 Stabilization techniques to circumvent the
Babuska-Brezzi condition

Stabilization techniques typically replace the system:

Au+BT p = f

Bu = 0

with an alternative system

Au+BT p = f

Bu− εDp = εd,

where ε is properly chosen and D is a positive, but not necessarily positive
definite, matrix.

To see that we obtain a nonsingular system we again multiply the first
equation with A−1 and then factorize:

4.5 Exercises 51

u = A−1f −A−1BT p

Bu = BA−1f −BA−1BT p = εd+ εDp

(BA−1BT + εD)p = BA−1f − εd

If D is nonsingular then (BA−1BT + εD) will be is nonsingular since both D
and BA−1BT are positive (only D is positive definite however).

Factorizing for p we end up with a Velocity-Schur complement. Solving for p
in the second equation and inserting the expression for p into the first equation
we have

p = (−εD)−1(εd−Bu)

⇓
Au+BT (−εD)−1(εd−Bu) = f

(A+
1

ε
BTD−1B)u = f +D−1d

(A+ 1
εB

TD−1B) is nonsingular since A is nonsingular andBTD−1B is positive.
At least, three techniques have been proposed for stabilization. These are:

1. ∇ · v + ε∆p = 0. Pressure stabilization. Motivated through mathematical
intuition (from the convection-diffusion equation).

2. ∇ · v − εp = 0. Penalty method. Typically, one uses the Velocity-Schur
complement

3. ∇·−ε∂p∂t = 0. Artificial compressibility. A practical method as one adds the
possibility for time stepping.

In other words, these techniques sets D to be

1. D = A
2. D = M
3. D = 1

∆tM

where A is the stiffness matrix (discrete laplace operator) and M is the mass
matrix.

4.5 Exercises

Exercise 4.1 Show that the conditions (4.15)-(4.17) are satisfied for Vh = H1
0

and Qh = L2.

52 4 Stokes problem

Exercise 4.2 Show that the conditions (4.15)-(4.17) are satisfied for Taylor–
Hood and Mini discretizations. (Note that Crouzeix–Raviart is non-conforming
so it is more difficult to prove these conditions for this case.)

Exercise 4.3 Condition (4.18) is difficult to prove. However, if we assume that
Vh = L2 and Qh = H1

0 , you should be able to prove it. (Hint: This is closely
related to Poincare’s inequality.)

Exercise 4.4 Test other finite elements for the Poiseuille flow problem. Con-
sider P1 − P0, P2 − P2, P2 − P0, as well as the Mini and Crouzeix–Raviart
element.

Exercise 4.5 Implement stabilization for the Poiseuille flow problem and use
first order linear elements for both velocity and pressure.

Exercise 4.6 In the previous problem the solution was a second order poly-
nomial in the velocity and first order in the pressure. We may therefore ob-
tain the exact solution and it is therefore difficult to check order of conver-
gence for higher order methods with this solution. In this exercise you should
therefore implement the problem u = (sin(πy), cos(πx), p = sin(2πx), and
f = −∆u −∇p. Test whether the approximation is of the expected order for
P4 − P3, P4 − P2, P3 − P2, and P3 − P1.

Exercise 4.7 Implement the Stokes problem with analytical solution u =
(sin(πy), cos(πx), p = sin(2πx), and f = −∆u − ∇p on the unit square.
Consider the case where you have Dirichlet conditions on the sides ’x=0’,
’x=1’ and ’y=1’ while Neumann is used on the last side (this way we avoid the
singular system associated with either pure Dirichlet or pure Neumann prob-
lems). Then determine the order of the approximation of wall shear stress on
the side ’x=0’. The wall shear stress on the side ’x=0’ is ∇u · t where t = (0, 1)
is the tangent along ’x=0’.

Chapter 5

Efficient Solution Algorithms: Iterative
methods and Preconditioning

To compute the solution of a partial differential equation, we often need to
solve a system of linear of equations with a large number of uknowns. The ac-
curacy of the solution increase with the number of unknowns used. Nowadays,
unknowns in the order of millions to billions are routinely solved for without
the use of (state-of-the-art) high-performance computing. Such computations
are fasilitated by the enormous improvements in numerical algorithms and
scientific software the last decades.

It should be quite clear that naive Gaussian elimination can not be em-
ployed. For a naive Gaussian eliminations implementaton, the number of re-
quired floating point operations (FLOPS) scales as the cube of the number
of uknowns. Hence, solving a problem with 106 unknowns would then require
1018 FLOPS which on a modern computer with e.g. 3 GHz still would take
about 10 years. As we will see later, such problems may in common cases
be solved in just a few seconds. There are two ingrediences in such efficient
algorithms: iterative methods and preconditioning.

Lets therefore consider the numerical solution of large linear systems,

Au = b,

where the linear system comes from discretization of PDEs. That is, A is a N×
N matrix, and N is between 106 and 109 in typical simulations. Furthermore,
the matrix is normally extremely sparse and contains only O(N) nonzeros (see
Exercise 5.1). It is important to notice that even though A is sparse A−1 will
in general be full. This is a main reason to consider iterative methods.

53

54 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

5.1 The simplest iterative method: the Richardson
iteration

The Richardson iteration 1 is

un = un−1 − τ(Aun−1 − b), (5.1)

where τ is a relaxation parameter that must be determined. Clearly, the
method is consistent in the sense that if un−1 = u, then un = u and the
iterative method has converged to the exact solution. It is also clear that each
iteration requires the evaluation of A on a vector, in addition to vector ad-
dition and scalar multiplication. Hence, one iteration requires the amount of
O(N) FLOPS and only O(N) of memory. This is a dramatic improvement
when compared Gaussian elimination at least if if the number of iterations are
few. The key to obtain few iterations is preconditioning, but lets first consider
the Richardson’s method without.

The standard approach to analyze iterative methods is to look at what
happens with the error. Let the error at the n’th iteration be en = un − u.
As this is a linear system of equations, we may subtract u from both sides of
(5.1) and obtain an equation for the iterative error:

en = en−1 − τAen−1.

We may therefore quantify the error in terms of the L2-norm as

‖en‖ = ‖en−1 − τAen−1‖ ≤ ‖I − τA‖‖en−1‖.

Clearly, if ‖I − τA‖ < 1 then the iteration will be convergent.

Assuming for the moment that A is symmetric and positive definite, then
the norm of A in general defined as

1 Richardson developed his method prior to computers. In his 1910 paper, where the
focus is to predict stresses in a masonry dam, he describes how he uses humans as
computational resources. He writes ”So far I have paid piece rates for the operation
[Laplacian] of about n/18 pence per coordinate point, n being the number of digits.
As for the rate of working, one of the quickest boys average 2000 operations per week,
for numbers of three digits, those done wrong being discounted.”

5.1 The simplest iterative method: the Richardson iteration 55

‖A‖ = max
x

‖Ax‖
‖x‖

equals the largest eigenvalue of A, λmax. Furthermore, if we assume that the
eigenvalues are ordered with respect to increasing value, such that λ0 and λN
are the smallest and largest eigenvalue, then the norm of I − τA,

‖I − τA‖ = max
x

‖(I − τA)x‖
‖x‖

is attained either for the smallest or largest eigenvalue as either (1 − τλ0) or
−(1−τλN). The optimal relaxation parameter τopt can be stated in terms of the
eigenvalues, λi, of A. Minimum is attained when (1− τoptλ0) = −(1− τoptλN)
which makes τopt = 2

λ0+λN
.

Let the convergence factor ρ be defined as

ρ = ‖I − τA‖

The convergence factor with an optimal relation is then

ρ = ‖I − τA‖ = max
λi
|1− τλi| = 1− τλ0 = 1− 2λ0

λ0 + λN
=
λN − λ0

λN + λ0
=
κ− 1

κ+ 1
.

Here, κ = λN
λ0

is the condition number.
We estimate the error reduction per iteation in terms of the convergence

factor as,
‖en‖ = ‖(I − τA)en−1‖ ≤ ρ‖en−1‖.

which leads to

‖en‖ ≤ (
κ− 1

κ+ 1
)n‖e0‖.

For iterative methods, we never iterate until the true solution exactly. In-
stead a convergence criteria needs to be choosen such that the error obtained
by the iterative method is less than or at least comparable to the approxi-
mation error of the original system. Determining an appropriate convergence
criteria is problem dependent and quite often challenging.

Nevertheless, let us assume that we need to reduce the error by a factor of

ε, that is, we need ‖e
n‖
‖e0‖ < ε. From the iteration, we have

‖en‖ ≤ ρ‖en−1‖ ≤ ρn‖e0‖. (5.2)

56 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

An estimate for the number of iterations is then obtained by assuming

equality in the equation (5.2) and ‖en‖
‖e0‖ = ε. Then the number of iterations

needed to achieve the desired error is:

n =
log ε

log ρ
=

log ε

log(K−1
K+1)

. (5.3)

If n is independent of the resolution of the discretization, the computational
cost of the algorithm is O(N) in FLOPS and memory and the algorithm is
order-optimal.

The current analysis of the simplest iterative method there is, the Richard-
son iteration, shows that the efficiency of the method is determined by the
condition number of the matrix. In the literature you will find a jungle of
methods of which the following are the most famous: the Conjugate Gradient
method, the Minimal Residual method, the BiCGStab method, and the GM-
RES method. It is remarkable that in general the convergence of these methods
is determined by the condition number with one exception; the Conjugate Gra-
dient method which often can be estimated in terms of the square root of the
condition number. One main advantage is however that these methods do not
require the determination of a τ to obtain convergence.

Eigenvalues of an elliptic problem in 1D and 2D.

Let us consider an elliptic problem:

u−∆u = f, in Ω, (5.4)

∂u

∂n
= 0, on ∂Ω. (5.5)

Notice that the lower order term u in front of −∆u makes removes the sin-
gularity associated with Neumann conditions and that in the continuous case
the smallest eigenvalue is 1 (associated with the eigenfunction that is a con-
stant throughout Ω). The following code computes the eigenvalues using linear
Lagrangian elements and

from dolfin import *

from numpy import linalg

for D in [1, 2]:

for N in [4, 8, 16, 32]:

5.1 The simplest iterative method: the Richardson iteration 57

if D == 1: mesh = UnitIntervalMesh(N)

elif D == 2: mesh = UnitSquareMesh(N, N)

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

a = u*v*dx + inner(grad(u), grad(v))*dx

A = assemble(a)

e = linalg.eigvals(A.array())

e.sort()

c = e[-1] / e[0]

print "D=\%d, N=\%3d, min eigenvalue =\%5.3f, max

eigenvalue =\%5.3f, cond.

number =\%5.3f " \% (D, N, e

[0], e[-1], c)

yields the following output:

D=1, N= 4, min eig=0.199, max eig=14.562, cond. number=73.041

D=1, N= 8, min eig=0.111, max eig=31.078, cond. number=279.992

D=1, N= 16, min eig=0.059, max eig=63.476, cond.

number=1079.408

D=1, N= 32, min eig=0.030, max eig=127.721, cond.

number=4215.105

D=2, N= 4, min eig=0.040, max eig=7.090, cond. number=178.444

D=2, N= 8, min eig=0.012, max eig=7.735, cond. number=627.873

D=2, N= 16, min eig=0.003, max eig=7.929, cond. number=2292.822

D=2, N= 32, min eig=0.001, max eig=7.982, cond. number=8693.355

The output shows that the condition number grows as h−2 in both 1D
and 2D although the behaviour of the eigenvalues clearly are dimension de-
pendent (see Exercise 5.2). The smallest eigenvalue decrease in both 1D and
2D as h → 0 but at different rates. To obtain eigenvalues corresponding the
true eigenvalue we would need to solve a generalized eigenvalue problem as
discussed in Chapter 2.

The Richardson iteration applied to a 1D Poisson equation.

58 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

The Richardson iteration on the Poisson equation in 1D, discretized with finite
difference method (FDM).

Lu =

{
−u′′ = f for x ∈ (0, 1)
u(0) = u(1) = 0

(5.6)

Eigenvalues and eigenfunctions of Lu are λk = (kπ)2 and vk = sin(kπx) for
k ∈ N. When discretizing with FDM we get a Au = b system, where A is a
tridiagonal matrix (A = tridiagonal(−1, 2,−1)) when the Dirichlet conditions
have been eliminated. The discrete and continuous eigenvectors are the same,
but the eigenvalues are a little bit different: λk = 4

h2 sin
2(kπh2), where h is the

step lenght ∆x. We find the smallest and largest discrete eigenvalues

λmin(A) = π2, λmax(A) =
4

h2
.

Let τ = 2
λmax+λmin

then from the analysis above,

‖en‖ ≤ (
1−K
1 +K

)n‖e0‖.

The below code perform the Richardson iteration for various resolution on the

1D Poisson problem and stops when the convergence criteria ‖rk‖‖r0‖ ≤ 10−6 is

obtained.

from numpy import *

def create_stiffness_matrix(N):

h = 1.0/(N-1)

A = zeros([N,N])

for i in range(N):

A[i,i] = 2.0/(h**2)

if i > 0:

A[i,i-1] = -1.0/(h **2)

if i < N-1:

A[i,i+1] = -1.0/(h **2)

A = matrix(A)

return A

Ns = [10 , 20 , 40, 80, 160 , 320]

for N in Ns:

A = create_stiffness_matrix(N) # creating

matrix

5.1 The simplest iterative method: the Richardson iteration 59

x = arange(0, 1, 1.0/(N))

f = matrix(sin(3.14*x)).transpose () # right hand

side

u0 = matrix(random.random(N)).transpose () # initial guess

u_prev = u0

eigenvalues = sort(linalg.eigvals(A)) # compute

eigenvalues and tau

lambda_max , lambda_min = eigenvalues[-1], eigenvalues[0]

print "lambda_max ", lambda_max , " lambda_min ", lambda_min

tau = 2/(lambda_max + lambda_min)

norm_of_residual = 1.0 # make sure the

iteration starts

no_iterations= 0

while norm_of_residual > 1.0e-6:

r = A*u_prev - f # compute the

residual

u = u_prev - tau*r # the Richardson

iteration

u_prev = u

norm_of_residual = r.transpose ()*r # check for norm

of residual

no_iterations+=1 # count no

iterations

print "N ", N, " number of iterations ", no_iterations

N λmin λmax no. iterations Estimated FLOPS
10 6.6 317 277 11 103

20 8.1 1435 1088 87 103

40 8.9 6075 4580 732 103

80 9.4 25*103 20 103 6.4 106

160 9.6 101*103 84 103 53 106

320 9.7 407*103 354 103 453 106

Table 5.1 The number of iterations of the Richardson iteration for solving a 1D
Poisson problem. The FLOPS is estimated as the number of iterations times four
times the number of unknowns, N , as the matrix is tridiagonal and there is both a
matrix vector product (3N) and a vector addtion involved in (5.1).

We remark that in this example we have initialized the iteration with a
random vector because such a vector contains errors at all frequencies. This is
recommended practice when trying to estabilish a worst case scenario. Testing

60 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

the iterative method against a known analytical solution with a zero start
vector will often only require smooth error to be removed during the iterations
and will therefore underestimate the complications of a real-world problem.

5.1.1 The stopping criteria

In the Example 5.1 we considered the Richardson iteration applied to a Poisson
problem in 1D. We saw that in order to stop the iteration we had to choose
a stopping criteria. Ideally we would like to stop when the error was small
enough. The problem is that the error is uknown. In fact, since en = un−u we
would be able to compute the exact solution if the error was known at the n’th
iteration. What is computable is the residual at the n’th iteration, defined by

rn = Aun − f.

It is straightforward to show that

Aen = rn.

But computing en from this relation would require the inversion of A (which
we try to avoid at all cost since it in general is a O(N3) procedure). For this
reason, the convergence criteria is typically expressed in terms of some norm
of the residual. We may bound the n’th error as

‖en‖ ≤ ‖A−1‖‖rn‖.

However, estimating ‖A−1‖ is in general challenging or computationally de-
manding and therefore usually avoided. To summarize, choosing an appropri-
ate stopping criteria is in general challenging and in practice the choice has to
be tailored to concrete application at hand by trial and error.

5.2 The idea of preconditioning

The basic idea of preconditioning is to replace

Au = b

5.2 The idea of preconditioning 61

with
BAu = Bb.

Both systems have the same solution (if B is nonsingular). However, B should
be chosen as a cheap approximation of A−1 or at least in such a way that BA
has a smaller condition number than A. Furthermore Bu should cost O(N)
operations to evaluate. Obviously, the preconditioner B = A−1 would make the
condition number of BA be one and the Richardson iteration would converge
in one iteration. However, B = A−1 is a very computationally demanding
preconditioner. We would rather seek preconditioners that are O(N) in both
memory consumption and evaluation.

The generalized Richardson iteration becomes

un = un−1 − τB(Aun−1 − b). (5.7)

The error in the n-th iteration is

en = en−1 − τBAen−1

and the iteration is convergent if ‖I − τBA‖ < 1.

5.2.1 Spectral equivalence and order optimal algorithms

Previously we stated that a good preconditioner is supposed to be similar to
A−1. The precise (and most practical) property that is required of a precon-
ditioner is:

• B should be spectrally equivalent with A−1.
• The evaluation of B on a vector, Bv, should be O(N).
• The storage of B should be O(N).

Definition 5.1 Two linear operators or matrices A−1 and B, that are sym-
metric and positive definite are spectral equivalent if:

c1(A−1v, v) ≤ (Bv, v) ≤ c2(A−1v, v) ∀v (5.8)

If A−1 and B are spectral equivalent, then the condition number of the matrix
BA is κ(BA) ≤ c2

c1
.

62 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

If the preconditioner B is spectrally equivalent with A−1 then the precon-
ditioned Richardson iteration yields and order optimal algorithm. To see this,
we note that en = (I − τBA)en−1. We can estimate the behavior of en by
using the A-norm, ρA = ‖I − τBA‖A. Then we get

‖en‖A ≤ ρA‖en−1‖A.

Hence, if the condition number is independent of the discretization then the
number of iterations as estimated earlier in (5.3) will be bounded indepen-
dently of the discretization.

In general, if A is a discretization of −∆ on a quasi-uniform mesh then
both multigrid methods and domain decomposition methods will yield pre-
conditioners that are spectrally equivalent with the inverse and close to O(N)
in evaluation and storage. The gain in using a proper preconditioner may pro-
vide speed-up of several orders of magnitude, see Example 5.3.

5.3 Krylov methods and preconditioning

For iterative methods, any method involving linear iterations may be written
as a Richardson iteration with a preconditioner. However, iterative methods
like Conjugate Gradient method, GMRES, Minimal Residual method, and
BiCGStab, are different. These are nonlinear iterations where for instance the
relaxation parameter τ changes during the iterations and are in fact often
choosen optimally with respect to the current approximation. Avoiding the
need to determine a fixed relaxation parameter prior to the iterations is of
course a huge practical benefit. Still, the convergence in practice can usually
be roughly estimated by the convergence analysis above for the Richardson
iteration.

We will not go in detail on these methods. We only remark that also with
these methods it is essential with a good preconditioning technique in order for
efficient computations. Furthermore, some of them have special requirements
and in some cases it is well-known what to use.

General Advice for usage of different methods:

We classify the methods according to the matrices they are used to solve.

5.3 Krylov methods and preconditioning 63

• If a matrix is Symmetric Positive Definite(SPD), i.e., A = AT and xTAx ≥
0 ∀x the the Conjugate Gradient method (CG) is the method of choice. CG
needs an SPD preconditioner, see also Exercise 5.6.

• If a matrix is Symmetric but indefinite, i.e. A = AT but both positive and
negative eigenvalues then the Minimal Residual method (MR) is the best
choice. MR requires an SPD preconditioner, see also Exercise 5.9.

• If the matrix is positive, i.e., xTAx ≥ 0 ∀x which is often the case for
convection-diffusion problems or flow problems then GMRES with either
ILU or AMG are often good, but you might need to experiment, see also
Exercise 5.7.

• For matrices that are both nonsymmetric and indefinite there is a jungle
of general purpose methods but they may be categories in two different
families. In our experience the BiCGStab and GMRES methods are the two
most prominent algorithms in these families. GMRES is relatively roboust
but may stagnate. BiCGStab may break down. GMRES has a parameter
’the number of search vectors’ that may be tuned.

Most linear algebra libraries for high performance computing like for in-
stance PETSc, Trilinos, Hypre have these algorithms implemented. They are
also implemented in various libraries in Python and Matlab. There is usually
no need to implement these algorithms yourself.

[

CPU times of different algorithms]

In this example we will solve the problem

u−∆u = f, in Ω

∂u

∂n
= 0, on ∂Ω

where Ω is the unit square with first order Lagrange elements. The problem
is solved with four different methods:

• a LU solver,
• Conjugate Gradient method,
• Conjugate Gradient method with an ILU preconditioner, and
• Conjugate Gradient method with an AMG preconditioner,

for N = 322, 642, 1282, 2562, 5122, 10242, where N is the number of degrees of
freedom.
Figure 5.1 shows that there is a dramatic difference between the algorithms. In

64 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

fact the Conjugate gradient (CG) with an AMG preconditioner is over 20 times
faster then the slowest method, which is the CG solver without preconditioner.
One might wonder why the LU solver is doing so well in this example when
it costs O(N2) – O(N3) . However, if we increase the number of degrees of
freedom, then the method would slow down compared to the other methods.
The problem is then that it would require too much memory and the program
would probably crash.

0 200000 400000 600000 800000 1000000 1200000
Degrees of freedom

0

10

20

30

40

50

60

70

80

90

Ti
m

e(
se

c)

lu
cg
cg/ilu
cg/amg

Fig. 5.1 CPU time (in seconds) for solving a linear system of equation with N degrees
of freedom (x-axis) for different solvers

from dolfin import *

import time

lu_time = []; cgamg_time = []

cg_time = []; cgilu_time = []

Ns = []

parameters["krylov_solver"]["relative_tolerance"] = 1.0e-8

parameters["krylov_solver"]["absolute_tolerance"] = 1.0e-8

parameters["krylov_solver"]["monitor_convergence"] = False

parameters["krylov_solver"]["report"] = False

parameters["krylov_solver"]["maximum_iterations"] = 50000

5.3 Krylov methods and preconditioning 65

def solving_time(A,b, solver):

U = Function(V)

t0 = time.time()

if len(solver) == 2:

solve(A, U.vector (), b, solver[0], solver[1]);

else:

solve(A, U.vector (), b, solver[0]);

t1 = time.time()

return t1-t0

for N in [32, 64, 128 , 256 , 512 , 1024]:

Ns.append(N)

mesh = UnitSquare(N, N)

print " N ", N, " dofs ", mesh.num_vertices ()

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Expression("sin(x[0]*12) - x[1]")

a = u*v*dx + inner(grad(u), grad(v))*dx

L = f*v*dx

A = assemble(a)

b = assemble(L)

t2 = solving_time(A,b, ["lu"])

print "Time for lu ", t2

lu_time.append(t2)

t2 = solving_time(A, b, ["cg"])

print "Time for cg ", t2

cg_time.append(t2)

t2 = solving_time(A, b, ["cg", "ilu"])

print "Time for cg/ilu ", t2

cgilu_time.append(t2)

t2 = solving_time(A, b, ["cg", "amg"])

print "Time for cg/amg ", t2

cgamg_time.append(t2)

import pylab

pylab.plot(Ns, lu_time)

66 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

pylab.plot(Ns, cg_time)

pylab.plot(Ns, cgilu_time)

pylab.plot(Ns, cgamg_time)

pylab.xlabel(’Unknowns ’)

pylab.ylabel(’Time(sec)’)

pylab.legend(["lu", "cg", "cg/ilu", "cg/amg"])

pylab.show()

pylab.loglog(Ns , lu_time)

pylab.loglog(Ns , cg_time)

pylab.loglog(Ns , cgilu_time)

pylab.loglog(Ns , cgamg_time)

pylab.legend(["lu", "cg", "cg/ilu", "cg/amg"])

pylab.savefig(’tmp_cpu.pdf’)

pylab.show()

When we employ iterative methods, we need to specify the convergence
criterion. This is often not an easy task. We have the continuous solution u,
the discrete solution uh, and the appropriate discrete solution, unh found by an
iterative method at iteration n. Obviously, we may estimate the error as

‖u− unh‖ ≤ ‖u− uh‖+ ‖uh − unh‖,

and it does make sense that the values of ‖u − uh‖ and ‖uh − unh‖ are bal-
anced. Still both terms may be hard to estimate in challenging applications.
In practice, an appropriate convergence criterion is usually found by trial and
error by choosing a stopping criterion based on the residual. Let us therefore
consider a concrete example and consider ‖u− unh‖ as a function of the mesh
resolution and a varying convergence criterion.

ε\ N 64 128 256 512 1024
1.0e-1 1.3e-02 (1.1e-02) 1.4e-02 (3.5e-02) 8.8e-03 (1.4e-01) 3.4e-03 (5.9e-01) 1.1e-02 (2.5e+00)
1.0e-2 1.2e-03 (1.0e-02) 2.0e-03 (3.7e-02) 1.3e-03 (1.5e-01) 3.5e-03 (5.8e-01) 3.7e-04 (2.7e+00)
1.0e-3 3.6e-04 (1.1e-02) 3.1e-04 (3.9e-02) 2.6e-04 (1.6e-01) 2.7e-04 (6.3e-01) 3.7e-04 (2.7e+00)
1.0e-4 3.4e-04 (1.2e-02) 8.5e-05 (4.5e-02) 2.4e-05 (1.8e-01) 3.4e-05 (6.7e-01) 1.4e-05 (2.9e+00)
1.0e-5 3.4e-04 (1.2e-02) 8.4e-05 (4.7e-02) 2.1e-05 (1.9e-01) 5.4e-06 (7.6e-01) 2.8e-06 (3.1e+00)
1.0e-6 3.4e-04 (1.3e-02) 8.4e-05 (5.0e-02) 2.1e-05 (2.1e-01) 5.3e-06 (8.1e-01) 1.3e-06 (3.3e+00)

Table 5.2 The error ‖u−unh‖ and corresponding CPU time in parentesis when solving
a Poisson problem with homogenuous Dirichlet conditions.

.

5.3 Krylov methods and preconditioning 67

Table 5.2 shows the error and the corresponding CPU timings when solving
a Poisson problem at various resolutions and convergence criteria. Here, the

convergence criteria is chosen as reducing the relative residual, i.e., ‖rk‖‖r0‖ by the

factor ε. This convergence criteria is very common, in particular for stationary
problems. There are several things to note here. For coarse resolution, N=64,
the error stagnates somewhere between 1.0e−3 and 1.0e−4 and this stagnation
marks where an appropriate stopping criteria is. It is however worth noticing
that solving it to a criteria that is 1.0e − 6 is actually only about 30% more
computationally demanding than 1.0e − 3. This is due to the fact that we
have a very efficient method that reduces the error by about a factor 10 per
iteration. If we consider the fine resolution, N=1024, we see that the stagnation
happens later and that we may not even have reached the stagnating point
even at ε = 1.0e−6. We also notice that the decreasing ε in this case only lead
to a moderate growth in CPU time. If we look closer at the table, we find that
the stagnation point follows a staircase pattern. The code used to generate the
table is as follows:

from dolfin import *

def boundary(x, on_boundary):

return on_boundary

parameters["krylov_solver"]["relative_tolerance"] = 1.0e-18

parameters["krylov_solver"]["absolute_tolerance"] = 1.0e-18

parameters["krylov_solver"]["monitor_convergence"] = True

parameters["krylov_solver"]["report"] = True

parameters [" krylov_solver "][" maximum_iterations "] = 50000

epss = [1.0e-1, 1.0e-2, 1.0e-3, 1.0e-4, 1.0e-5, 1.0e-6]

data = {}

Ns= [64, 128 , 256 , 512 , 1024]

#Ns= [8, 16 , 32 , 64]

for N in Ns:

for eps in epss:

parameters["krylov_solver"]["relative_tolerance"] = eps

mesh = UnitSquareMesh(N, N)

V = FunctionSpace(mesh , "P", 1)

u = TrialFunction(V)

v = TestFunction(V)

u_ex = Expression("sin(3.14*x[0])*sin(3.14*x[1])", degree=

3)

f = Expression("2*3.14*3.14*sin(3.14*x[0])*sin(3.14*x[1])"

, degree=3)

a = inner(grad(u), grad(v))*dx

68 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

L = f*v*dx

U = Function(V)

A = assemble(a)

b = assemble(L)

bc = DirichletBC(V, u_ex , boundary)

bc.apply(A)

bc.apply(b)

t0 = time()

solve(A, U.vector (), b, "gmres", "amg")

t1 = time()

cpu_time = t1-t0

error_L2 = errornorm(u_ex , U, ’L2’, degree_rise=3)

data[(N, eps)] = (error_L2 , cpu_time)

for eps in epss:

for N in Ns:

D1, D2 = data[(N, eps)]

print " %3.1e (%3.1e) " % (D1 , D2),

print ""

Eigenvalues of the preconditioned system.

It is often interesting to assess the condition number of the preconditioned
system, BA. If the preconditioner is a matrix and the size of the system is mod-
erate we may be able to estimate the condition number of BA using NumPy,
Matlab or Octave. However, when our preconditioner is an algorithm represent-
ing a linear operator, such as in the case of multigrid, then this is not possible.
However, as described in [12], egenvalues may be estimated as a bi-product of
the Conjugate Gradient method. Without going into the algorithmic details
of the implmementation, we mention that this is implemented in the FEniCS
module cbc.block, see [8]. The following code shows the usage.

from dolfin import *

from block.iterative import ConjGrad

from block.algebraic.petsc import ML

from numpy import random

def boundary(x, on_boundary):

return on_boundary

5.3 Krylov methods and preconditioning 69

class Source(Expression):

def eval(self , values , x):

dx = x[0] - 0.5; dy = x[1] - 0.5

values[0] = 500.0*exp(-(dx*dx + dy*dy)/0.02)

Ns = [8, 16 , 32 , 64, 128 , 256 , 512 , 1024]

for N in Ns:

mesh = UnitSquareMesh(N,N)

V = FunctionSpace(mesh , "CG", 1)

Define variational problem

v = TestFunction(V)

u = TrialFunction(V)

f = Source(degree=3)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

bc = DirichletBC(V, Constant(0), boundary)

Assemble matrix and vector , create precondition and

start vector

A, b = assemble_system(a,L, bc)

B = ML(A)

x = b.copy()

x[:] = random.random(x.size(0))

solve problem and print out eigenvalue estimates .

Ainv = ConjGrad(A, precond=B, initial_guess=x, tolerance=

1e-8, show=2)

x = Ainv*b

e = Ainv.eigenvalue_estimates ()

print "N=%d iter=%d K=%.3g" % (N, Ainv.iterations , e[-1]/e

[0])

In this example we see that the condition number increases logaritmic from
1.1 to 2.1 as the N increases from 8 to 1024. The AMG preconditioner has better
performance and does not show logaritmic growth. For indefinite symmetric
systems, the CGN method provides the means for estimating the condition
number, c.f., the cbc.block documentation.

70 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

5.3.1 Insight from Functional Analysis

In the previous Chapters 3 and 4 we have discussed the well-posedness of
the convection-diffusion equations and the Stokes problem. In both cases, the
problems were well-posed - meaning that the differential operators as well
as their inverse were continuous. However, when we discretize the problems
we get matrices where the condition number grows to infinity as the element
size goes to zero. This seem to contradict the well-posedness of our discrete
problems and may potentially destroy both the accuracy and efficiency of our
numerical algorithms. Functional analysis explains this apparent contradiction
and explains how the problem is circumvented by preconditioning.

Let us now consider the seeming contradiction in more precise mathematical
detail for the Poisson problem with homogeneous Dirichlet conditions: Find u
such that

−∆u = f, in Ω, (5.9)

u = 0, on ∂Ω. (5.10)

We know from Lax-Milgram’s theorem that the weak formulation of this
problem: Find u ∈ H1

0 such that

a(u, v) = b(v), ∀v ∈ H1
0 .

where

a(u, v) =

∫
Ω

∇u · ∇v dx, (5.11)

b(v) =

∫
Ω

fv dx, (5.12)

is well-posed because

a(u, u) ≥ α|u|21 , ∀u ∈ H1
0 (5.13)

a(u, v) ≤ C|u|1|v|H1
0
∀u, v ∈ H1

0 . (5.14)

Here | · |1 denotes the H1 semi-norm which is known to be a norm on H1
0 due

to Poincare. The well-posedness is in this case stated as

|u|H1
0
≤ 1

α
‖f‖H−1 . (5.15)

5.3 Krylov methods and preconditioning 71

In other words, −∆ takes a function u in H1
0 and returns a function f = −∆u

which is in H−1. We have that ‖f‖−1 = ‖ − ∆u‖−1 ≤ C‖u‖1. Also, −∆−1

takes a function f in H−1 and returns a function u = (−∆)−1f which is in H1
0 .

We have that ‖u‖1 = ‖(−∆)−1f‖1 ≤ 1
α‖f‖−1. In fact, in this case α = C = 1.

This play with words and symbols may be formalized by using operator
norms that are equivalent with matrix norms. Let B ∈ Rn,m then

‖B‖L(Rm,Rn) = max
x∈Rm

‖Bx‖Rn
‖x‖Rm

Here L(Rm,Rn) denotes the space of all m× n matrices.
Analogously, we may summarize the mapping properties of −∆ and (−∆)−1

in terms of the conditions of Lax-Milgram’s theorem as

‖ −∆‖L(H1
0 ,H

−1) ≤ C and ‖(−∆)−1‖L(H−1,H1
0) ≤

1

α
. (5.16)

where L(X,Y) denotes the space of bounded linear operators mapping X to Y .
In other words, −∆ is a bounded linear map from H1

0 to H−1 and (−∆)−1 is a
bounded linear map from H−1 to H1

0 . This is a crucial observation in functional
analysis that, in contrast to the case of a matrix which is a bounded linear
map from Rn to Rm, an operator may be map from one space to another.

From Chapter 2 we know that the eigenvalues and eigenvectors of −∆ with
homogeneous Dirichlet conditions on the unit interval in 1D are λk = (πk)2

and ek = sin(πkx), respectively. Hence the eigenvalues of −∆ obviously tend
to ∞ as k grows to ∞ and similarly the eigenvalues of (−∆)−1 accumulate at
zero as k → ∞. Hence the spectrum of −∆ is unbounded and the spectrum
of (−∆)−1 has an accumulation point at zero. Still, the operator −∆ and its
inverse are bounded from a functional analysis point of view, in the sense of
(5.18).

Let us for the moment assume that we have access to an operator B with
mapping properties that are inverse to that of A = −∆, i.e.,

‖B‖L(H−1,H1
0) and ‖B−1‖L(H1

0 ,H
−1). (5.17)

Then it follows directly that

‖BA‖L(H1
0 ,H

1
0) and ‖(BA)−1‖L(H1

0 ,H
1
0). (5.18)

and the condition number

72 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

κ(BA) =
maxi λi(BA)

mini λi(BA)
= ‖BA‖L(H1

0 ,H
1
0)‖(BA)−1‖L(H1

0 ,H
1
0)

would be bounded. In the discrete case, the mapping property (5.17) translates
to the fact that B should be spectrally equivalent with the inverse of A when
B and A are both positive.

While the above discussion is mostly just a re-iteration of the concept of
spectral equivalence in the discrete case when the PDEs are elliptic, the insight
from functional analysis can be powerful for systems of PDEs. Let us consider
the Stokes problem from Chapter 4. The problem reads:

A
[
u
p

]
=

[
−∆ −∇
∇· 0

] [
u
p

]
=

[
u
p

]
As discussed in Chapter 4

A : H1
0 × L2 → H−1 × L2

was a bounded linear mapping with a bounded inverse. Therefore, a precon-
ditioner can be constructed as

B =

[
(−∆)−1 0

0 I

]
Clearly

B : H−1 × L2 → H1
0 × L2

and is therefore a suitable preconditioner. However, we also notice that A
and B−1 are quite different. A is indefinite and has positive and negative
egenvalues, while B is clearly positive. Hence, the operators are not spectrally
equivalent. Exercise 5.9 looks deeper into this construction of preconditioners
for Stokes problem. A more comprehensive description of this technique can
be found in [9].

5.4 Exercises

Exercise 5.1 Estimate ratio of non-zeros per unknown of the stiffness matrix
on the unit square with Lagrangian elements of order 1, 2, 3 and 4. Hint:
the number of non-zeros can be obtained from the function ’nnz’ of a matrix
object.

5.4 Exercises 73

Exercise 5.2 Compute the smallest and largest eigenvalues of the mass ma-
trix and the stiffness matrix in 1D, 2D and 3D. Assume that the condition
number is on the form κ ≈ Chα, where C and α may depend on the number
of dimentions in space. Finally, compute the corresponding condition num-
bers. Does the condition number have the same dependence on the number of
dimentions in space?

Exercise 5.3 Repeat Exercise 5.2 but with Lagrange elements of order 1,
2 and 3. How does the order of the polynomial affect the eigenvalues and
condition numbers.

Exercise 5.4 Compute the eigenvalues the discretized Stokes problem using
Taylor-Hood elements. Note that the problem is indefinite and that there are
both positive and negative eigenvalues. An appropriate condition number is:

κ =
maxi |λi|
mini |λi|

where λi are the eigenvalues of A. Compute corresponding condition num-
bers for the Mini and Crouzeix-Raviart elements. Are the condition numbers
similar?

Exercise 5.5 Implement the Jacobi iteration for a 1D Poisson problem with
homogeneous Dirichlet conditions. Start the iteration with an initial random
vector and estimate the number of iterations required to reduce the L2 norm
of the residual with a factor 104. For relevant code see Example 5.3.

Exercise 5.6 Test CG method without preconditioer, with ILU precondi-
tioner and with AMG preconditioner for the Poisson problem in 1D and 2D
with homogeneous Dirichlet conditions, with respect to different mesh resolu-
tions. Do some of the iterations suggest spectral equivalence?

Exercise 5.7 Test CG, BiCGStab, GMRES with ILU, AMG, and Jacobi pre-
conditioning for

−µ∆u+ v∇u = f in Ω

u = 0 on ∂Ω

Where Ω is the unit square, v = c sin(7x), and c varies as 1, 10, 100, 1000, 10000
and the mesh resolution h varies as 1/8, 1/16, 1/32, 1/64. You may assume
homogeneous Dirichlet conditions.

74 5 Efficient Solution Algorithms: Iterative methods and Preconditioning

Exercise 5.8 The following code snippet shows the assembly of the matrix
and preconditioner for a Stokes problem:

a = inner(grad(u), grad(v))*dx + div(v)*p*dx + q*div(u)*dx

L = inner(f, v)*dx

Form for use in constructing preconditioner matrix

b = inner(grad(u), grad(v))*dx + p*q*dx

Assemble system

A, bb = assemble_system(a, L, bcs)

Assemble preconditioner system

P, btmp = assemble_system(b, L, bcs)

Create Krylov solver and AMG preconditioner

solver = KrylovSolver("tfqmr", "amg")

Associate operator (A) and preconditioner matrix (P)

solver.set_operators(A, P)

Solve

U = Function(W)

solver.solve(U.vector (), bb)

Here, ”tfqmr” is a variant of the Minimal residual method and ”amg” is an
algebraic multigrid implementation in HYPRE. Test, by varying the mesh
resolution, whether the code produces an order–optimal preconditioner. HINT:
You might want to change the ”parameters” as done in Example 5.3:

Create Krylov solver and AMG preconditioner

solver = KrylovSolver("tfqmr", "amg")

solver.parameters["relative_tolerance"] = 1.0e-8

solver.parameters["absolute_tolerance"] = 1.0e-8

solver.parameters["monitor_convergence"] = True

solver.parameters["report"] = True

solver.parameters["maximum_iterations"] = 50000

Exercise 5.9 Consider the mixed formulation of linear elasticity that is ap-
propriate when λ is large compared to µ. That is,

a = inner(grad(u), grad(v))*dx + div(v)*p*dx + q*div(u)*dx - 1

/lam*p*q*dx

L = inner(f, v)*dx

Create two preconditioners:

5.4 Exercises 75

b1 = inner(grad(u), grad(v))*dx + p*q*dx

b2 = inner(grad(u), grad(v))*dx + 1/lam*p*q*dx

Compare the efficiency of the different preconditioners when increasing the
resolution and when λ → ∞. Can you explain why the first preconditioner is
the best?

Chapter 6

Linear elasticity and singular problems

6.1 Introduction

Let us consider an elastic body Ω0 that is being deformed under a load to
becomeΩ. the deformation χ of a body in the undeformed stateΩ0 to deformed
state Ω. A point in the body has then moved

u = x−X, (6.1)

by definition this is displacement field. An illustration is shown in Figure 6.1.

Fig. 6.1 Deforming body and displacement vector u.

Here, the domain Ω0 ⊂ R3. From continuum mechanics, the elastic defor-
mation is modelled by the stress tensor σ which is a symmetric 3 × 3 tensor.
In equilibrium (i.e. no accelration terms) the Newton’s second law states the
balance of forces as:

77

78 6 Linear elasticity and singular problems

div σ = f, in Ω,

σ · n = g, on ∂Ω,

where f and g are body and surface forces, respectively and n is the outward
normal vector.

For small deformations of an isotropic media, Hooke’s law is a good approx-
imation. Hooke’s law states that

σ = 2µε(u) + λ tr(ε(u))δ.

Here, ε(u) is the strain tensor or the symmetric gradient:

ε(u) =
1

2
(∇u+ (∇u)T),

µ and λ are the Lame constants, tr is the trace operator (the sum of the
diagonal matrix entries), u is the displacement, and

δ =

1 0 0
0 1 0
0 0 1

 .
From Newton’s second law and Hooke’s law we arrive directly at the equa-

tion of linear elasticity:

−2µ(∇ · ε(u))− λ∇(∇ · u) = f. (6.2)

The equation of linear elasticity (6.2) is an elliptic equation, but there are
crucial differences between this equation and a standard elliptic equation like
−∆u = f . These differences often cause problems in a numerical setting. To
explain the numerical issues we will here focus on the differences between the
three operator:

1. −∆ = ∇ · ∇ = div grad,
2. ∇ · ε = ∇ · (1

2 (∇+ (∇T)),
3. ∇ · tr ε = ∇∇· = grad div.

In particular, the differences between the operators in 1. and 2. is that ∇ · ε
has a larger kernel than −∆. The kernel consists of rigid motions and this
leads to the usage of of one of Korn’s lemmas. This is the subject of Section
6.2. The kernel of the operators grad div and div grad are also different but
here in fact the kernel of grad div is infinite dimentional and this has different

6.2 The operator ∇ · ε and rigid motions 79

consequences for the numerical algorithms which not necessarily pick up this
kernel at all. This is discussed in Section 6.3.

6.2 The operator ∇ · ε and rigid motions

The challenge with the handling of the ∇ · ε operator is the handling of the
singularity in the case of pure Neumann conditions. Let us therefore start with
the simpler problem of the Poisson problem with Neumann conditions, i.e.,

−∆u = f, in Ω, (6.3)

∂u

∂n
= g, on ∂Ω. (6.4)

It is easy to see that this problem is singular: Let u be a solution of the
above equation, then u + C with C ∈ R is also a solution because −∆u =

∆(u + C) = f and ∂u
∂n = ∂(u+C)

∂n = g. Hence, the solution is only determined
up to a constant. This means that the kernel is 1-dimentional.

A proper formulation of the above problem can be obtained by using the
method of Lagrange multipliers to fixate the element of the 1-dimentional
kernel. The following weak formulation is well-posed: Find u ∈ H1 and λ ∈ R
such that

a(u, v) + b(λ, v) = f(v) ∀v ∈ H1 (6.5)

b(u, γ) = 0, ∀γ ∈ R. (6.6)

Here,

a(u, v) = (∇u,∇v), (6.7)

b(λ, v) = (λ, v), (6.8)

f(v) = (f, v) +

∫
∂Ω

gvds. (6.9)

Hence, the method of Lagrange multipliers turns the original problem into a
saddle problem similar that in Chapter 4. However, in this case the Brezzi
conditions are easily verified. We remark however that this formulation makes
the problem indefinite rather than positive definite and for this reason alterna-
tive techniques such as pin-pointing is often used instead. We will not avocate
this approach as it often causes numerical problems. Instead, we include a

80 6 Linear elasticity and singular problems

code example that demonstrate how this problem can be implemented with
the method of Lagrange multipliers in FEniCS.

from dolfin import *

mesh = UnitSquareMesh(64, 64)

Build function space with Lagrange multiplier

P1 = FiniteElement("Lagrange", mesh.ufl_cell (), 1)

R = FiniteElement("Real", mesh.ufl_cell (), 0)

W = FunctionSpace(mesh , P1 * R)

Define variational problem

(u, c) = TrialFunction(W)

(v, d) = TestFunctions(W)

f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5,

2)) / 0.02)", degree=2)

g = Expression("-sin(5*x[0])", degree=2)

a = (inner(grad(u), grad(v)) + c*v + u*d)*dx

L = f*v*dx + g*v*ds

Compute solution

w = Function(W)

solve(a == L, w)

(u, c) = w.split()

Plot solution

plot(u, interactive=True)

The kernel of the ε operator is the space of rigid motions, RM. The space
consists of translations and rotations. Rigid motions are on the following form
in 2D and 3D:

RM2D =

[
a0

a1

]
+ a2

[
−y
x

]
, (6.10)

RM3D =

a0

a1

a2

+

 0 a3 a4

−a3 0 a5

−a4 −a5 0

xy
z

 . (6.11)

Hence, the kernel in 2D is three-dimentional and may be expressed as above
in terms of the degrees of freedom (a0, a1, a2) whereas the kernel in 3D is
six-dimentional (a0, . . . , a5).

The Korn’s lemmas states suitable conditions for solvability. Here, we in-
clude two of the three inequalities typically listed.

• The first lemma: For all u ∈ H1\RM we have that ‖ε(u)‖ ≥ C‖u‖1.

6.2 The operator ∇ · ε and rigid motions 81

• The second lemma: For all u ∈ H1
0 we have that ‖ε(u)‖ ≥ C‖u‖1.

These lemmas should be compared with the Poincare’s lemma and the equiv-
alence of the | · |1 and ‖ · ‖1 norms. The second lemma states that when we
have homogenous Dirichlet conditions we obtain a well-posed problem in a
similar manner as for a standard elliptic problem. This case is often called
fully-clamped conditions. For the Neumann problem, however, coersivity is
not obtained unless we remove the complete set of rigid motions for the func-
tion space used for trial and test functions. Removing the rigid motions is most
easily done by using the method of Lagrange multipliers.

Let us now consider a weak formulation of the linear elasticity problem and
describe how to implement it in FEniCS. For now we consider the case where
λ and µ are of comparable magnitude. In the next section we consider the case
where λ � µ. The weak formulation of the linear elasticity problem is: Find
u ∈ H1 and r ∈ RM such that

a(u, v) + b(r, v) = f(v), ∀v ∈ H1, (6.12)

b(s, u) = 0, ∀s ∈ RM . (6.13)

Here,

a(u, v) = µ(ε(u), ε(v)) + λ(div u,div v) (6.14)

b(r, v) = (r, v), (6.15)

f(v) = (f, v) +

∫
∂Ω

gvds. (6.16)

As we know from Chapter 4, this is a saddle point problem and we need
to comply with the Brezzi conditions. Verifying these conditions are left as
Exercise 6.4.

O

ur brain and spinal cord is floating in a water like fluid called the cerebrospinal
fluid. While the purpose of this fluid is not fully known, it is known that the
pressure in the fluid oscillates with about 5-10 mmHg during a cardic cycle
which is approximately one second, c.f., e.g., [3]. The Youngs’ modulus has
been estimated 16 kPa and 1 mmHg ≈ 133 Pa, c.f., e.g., [13]. To compute the
deformation of the brain during a cardiac cycle we consider solve the linear
elasticity problem with Neumann condtions set as pressure of 1 mm Hg and
... The following code shows the implmentation in FEniCS. The mesh of the

82 6 Linear elasticity and singular problems

brain was in this case obtained from a T1 magnetic ressonance image and
segmentation was performed by using FreeSurfer.

from fenics import *

mesh = Mesh(’mesh/res32.xdmf’) # mm

plot(mesh ,interactive=True)

Since the mesh is in mm pressure units in pascal must be

scaled by alpha = (1e6)**(-1)

alpha = (1e6)**(-1)

Mark boundaries

class Neumann_boundary(SubDomain):

def inside(self , x, on_boundry):

return on_boundry

mf = FacetFunction("size_t", mesh)

mf.set_all(0)

Neumann_boundary ().mark(mf , 1)

ds = ds[mf]

Continuum mechanics

E = 16*1e3 *alpha

nu = 0.25

mu, lambda_ = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu

)*(1 - 2*nu)))

epsilon = lambda u: sym(grad(u))

p_outside = 133 *alpha

n = FacetNormal(mesh)

f = Constant ((0, 0, 0))

V = VectorFunctionSpace(mesh , "Lagrange", 1)

--------------- Handle Neumann -problem ---------------

R = FunctionSpace(mesh , ’R’, 0) # space for one

Lagrange multiplier

M = MixedFunctionSpace([R]*6) # space for all

multipliers

W = MixedFunctionSpace([V, M])

u, rs = TrialFunctions(W)

v, ss = TestFunctions(W)

Establish a basis for the nullspace of RM

e0 = Constant ((1, 0, 0)) # translations

6.2 The operator ∇ · ε and rigid motions 83

e1 = Constant ((0, 1, 0))

e2 = Constant ((0, 0, 1))

e3 = Expression ((’-x[1]’, ’x[0]’, ’0’)) # rotations

e4 = Expression ((’-x[2]’, ’0’, ’x[0]’))

e5 = Expression ((’0’, ’-x[2]’, ’x[1]’))

basis_vectors = [e0, e1, e2 , e3 , e4, e5]

a = 2*mu*inner(epsilon(u),epsilon(v))*dx + lambda_*inner(div(u

),div(v))*dx

L = inner(f, v)*dx + p_outside*inner(n,v)*ds(1)

Lagrange multipliers contrib to a

for i, e in enumerate(basis_vectors):

r = rs[i]

s = ss[i]

a += r*inner(v, e)*dx + s*inner(u, e)*dx

--

Assemble the system

A = PETScMatrix ()

b = PETScVector ()

assemble_system(a, L, A_tensor=A, b_tensor=b)

Solve

uh = Function(W)

solver = PETScLUSolver(’mumps ’) # NOTE: we use direct solver

for simplicity

solver.set_operator(A)

solver.solve(uh.vector (), b)

Split displacement and multipliers . Plot

u, ls = uh.split(deepcopy=True)

plot(u, mode=’displacement ’, title=’Neumann_displacement ’,

interactive=True)

file = File(’deformed_brain.pvd’)

file << u

84 6 Linear elasticity and singular problems

Fig. 6.2 Deformation of the human brain during a cardiac cycle.

6.3 Locking

The locking phenomena has nothing to do with the problem related to the
rigid motions studied in the previous section. Therefore, we consider locking
in the simplest case possible where we have homogenous Dirichlet conditions.
In this case the elasticity equation can be reduced to

−µ∆u− (µ+ λ)∇∇ · u = f, inΩ,

u = 0, on∂Ω.

The weak formulation of the problem then becomes: Find u ∈ H1
0 such that

a(u, v) = f(v), ∀v ∈ H1
0 ,

where

a(u, v) = µ(∇u,∇v) + (µ+ λ)(∇ · u,∇ · v), (6.17)

f(v) = (f, v). (6.18)

The phenomen locking is a purely numerical artifact that arise when λ� µ.
Roughly speaking, approximating ∇ and ∇· require different methods. While
vertices based approximations work fine for ∇, edge based methods are more

6.3 Locking 85

natural for ∇· since this operator relates directly to the flux through the ele-
ment edges.

For smooth functions, it can be verified directly that

∆ = ∇ · ∇ = ∇∇ ·+∇×∇×

where ∇× is the curl operator. Hence in H1
0 we have

(∇u,∇v) = (∇ · u,∇ · v) + (∇× u,∇× v).

Furthermore, it is well known (the Helmholz decomposition theorem) that
any field in L2 or H1 can be decomposed into a the gradient of a scalar po-
tential (irrotational, curl-free vector field) and the curl of scalar (a solenoidal,
divergence-free vector field). That is,

u = ∇φ+∇× ψ,

where φ and ψ are scalar fields that can be determined. Furthermore,

∇ · ∇ × u = 0, (6.19)

∇×∇ · u = 0. (6.20)

This means that

∇∇ · u =

{
∆u if u is a gradient
0 if u is a curl

As the material becomes incompressible, when λ → ∞ the gradient part is
being locked and φ tends to zero. However, the curl represented by ψ remains
unaffected. Vertex based finite elements such as Lagrange are poor at distin-
guising between gradients and curls and tend to lock the complete solution.
Exercise 6.5 investigates this phenomena numerically.

To avoid locking it is common to introduce a the quantity solid pressure,
p = (µ+ λ)∇ · u. Introducing this as a separate unknown into the system we
obtain the equations:

−µ∆u−∇p = f,

∇ · u− 1

µ+ λ
p = 0.

This system of equations is similar to the Stokes problem. Hence, we may
formulation a weak problems as follows. Find u ∈ H1

0 and p ∈ L2 such that

86 6 Linear elasticity and singular problems

a(u, v) + b(p, v) = f(v)∀v ∈ H1 (6.21)

b(u, q)− c(p, q) = 0,∀q ∈ R. (6.22)

Here,

a(u, v) = (∇u,∇v), (6.23)

b(p, v) = (∇p, v), (6.24)

c(p, q) =
1

µ+ λ
(p, q) (6.25)

f(v) = (f, v). (6.26)

The case when λ → ∞ then represents the Stokes problem as 1
µ+λ → 0.

Hence, for this problem we know that stable discretizations can be obtained
as long as we have Stokes-stable elements like for instance Taylor–Hood. We
also remark that Stokes-stable elements handle any µ, λ because the −c(p, q)
is a negative term that only stabilize. In fact, this problem is identical to the
proposed penalty method that was discussed for the Stokes problem.

Exercise 6.1 Show that the inner product of a symmetric matrix A and ma-
trix B equals the inner product of A and the symmetric part of B, i.e., that
A : B = A : BS , where BS = 1

2 (B +BT).

Exercise 6.2 Show that the term div ε(u) in a weak setting may be written
as (ε(u), ε(v)). Use the result of Exercise 6.1.

Exercise 6.3 Show that the Brezzi conditions (4.15-4.18) for the singular
problem of homogenous Neumann conditions for the Poisson problem (6.5)–
(6.9). Hint: use the following version of Poincare’s lemma:

‖u− ū‖0 ≤ C‖∇u‖0, ∀u ∈ H1.

Here, ū = 1
|Ω|
∫
Ω
udx. As always, the inf-sup condition is challenging, but

notice that

supu∈Vh
b(u, q)

‖u‖Vh
≥ b(ū, q)

‖ū‖Vh
.

Exercise 6.4 Show that three of Brezzi conditions (4.15-4.17) for problem
linear elasticity problem with pure Neumann conditions (6.12)-(6.13) are valid.
Hint: use Korn’s lemma for the coersivity. As always, the inf-sup condition is
challenging and we refer to [6].

6.3 Locking 87

Exercise 6.5 We will consider the topic ’locking’. Consider the following equa-
tion on the domain Ω = (0, 1)2:

−µ∆u− λ∇∇ · u = f in Ω, (6.27)

u = uanalytical on ∂Ω (6.28)

where uanalytical = (∂φ∂y ,−
∂φ
∂x) and φ = sin(πxy). Here, by construction, ∇ ·

uanalytical = 0.
a) Derive an expression for f . Check that the expression is independent of λ.
b) Compute the numerical error for λ = 1, 100, 10000 at h = 8, 16, 32, 64 for
polynomial order both 1 and 2.
c) Compute the order of convergence for different λ. Is locking occuring?

Index

Richardson iteration, 54
Richardson preconditioner, 60

Spectral equivalence, 61

89

References

1. D. Braess, Finite elements: Theory, fast solvers, and applications in solid me-
chanics, Cambridge University Press, 2007.

2. S. C. Brenner and R. Scott, The mathematical theory of finite element methods,
vol. 15, Springer Science & Business Media, 2008.

3. P. K. Eide, The correlation between pulsatile intracranial pressure and indices
of intracranial pressure-volume reserve capacity: results from ventricular infusion
testing, Journal of neurosurgery, 125 (2016), pp. 1493–1503.

4. H. C. Elman, D. Silvester, and A. Wathen, Finite elements and fast itera-
tive solvers: with applications in incompressible fluid dynamics, Oxford University
Press, 2014.

5. L. C. Evans, Partial differential equations, vol. 19, American Mathematical Soci-
ety, 2022.

6. M. Kuchta, K.-A. Mardal, and M. Mortensen, On the singular neumann prob-
lem in linear elasticity, arXiv preprint arXiv:1609.09425, (2016).

7. A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential equa-
tions by the finite element method: The FEniCS book, vol. 84, Springer Science &
Business Media, 2012.

8. K.-A. Mardal and J. B. Haga, Block preconditioning of systems of pdes, Auto-
mated Solution of Differential Equations by the Finite Element Method, (2012),
pp. 643–655.

9. K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of
partial differential equations, Numerical Linear Algebra with Applications, 18
(2011), pp. 1–40.

10. A. Quarteroni and A. Valli, Numerical approximation of partial differential
equations, vol. 23, Springer Science & Business Media, 2008.

11. J. Rauch, Partial Differential Equations, Springer, 1997.
12. Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
13. K. H. Støverud, M. Alnæs, H. P. Langtangen, V. Haughton, and K.-A.

Mardal, Poro-elastic modeling of syringomyelia–a systematic study of the effects
of pia mater, central canal, median fissure, white and gray matter on pressure
wave propagation and fluid movement within the cervical spinal cord, Computer
methods in biomechanics and biomedical engineering, 19 (2016), pp. 686–698.

91

