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Summary

The Neumann problem of linear elasticity is singular with a kernel formed by
the rigid motions of the body. There are several tricks that are commonly used
to obtain a nonsingular linear system. However, they often cause reduced accu-
racy or lead to poor convergence of the iterative solvers. In this paper, different
well-posed formulations of the problem are studied through discretization by the
finite element method, and preconditioning strategies based on operator precon-
ditioning are discussed. For each formulation, we derive preconditioners that
are independent of the discretization parameter. Preconditioners that are robust
with respect to the first Lamé constant are constructed for the pure displacement
formulations, whereas a preconditioner that is robust in both Lamé constants is
constructed for the mixed formulation. It is shown that, for convergence in the

Grant/Award Number: 179578 first Sobolev norm, it is crucial to respect the orthogonality constraint derived

from the continuous problem. On the basis of this observation, a modification
to the conjugate gradient method is proposed, which achieves optimal error
convergence of the computed solution.
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1 | INTRODUCTION

This paper discusses numerical techniques for solving the singular problem of linear elasticity. Let Q c R3 be the body
subjected to volume forces f : Q — R3 and surface forces h : 0Q — R3. The body's displacement u : Q — R3 is then
found as a solution to

-V-ow=f in Q,
o(u) =2ue(u) + AV -wl inQ, (D)
oc(u-n=nh onl'y = 0Q,

with 4 > 0and A > 0asthe Lamé constants of the material, I as the identity matrix, e(u) = % (Vu + (Vu)T) as the strain,
and n as the outward-pointing surface normal (see the work of Marsden and Hughes!). We note that the constitutive law
for the stress tensor ¢ can be equivalently stated as o(u) = 2ue(u) + Atr(e(u))l, where tr(e(u)) denotes the trace of e(u),
that is, the sum of its diagonal.

The system is used extensively in structural analysis? and is relevant in numerous applications, for example, marine
engineering,® biomechanics of brain,* spine,> or the mechanics of planetary bodies.®

Due to the absence of a Dirichlet boundary condition that can anchor the body (coordinate system) in space, the solution
can be uniquely determined if and only if the net force and the net torque on Q are zero, that is, the forces f and h satisfy
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the compatibility conditions
/ fdx+ / hds =0,
Q 0Q @)
/fxxdx+/h><xds =0.
Q 0Q

With such compatible data, the now solvable (1) is singular as any rigid motion can be added to the solution. We note that
the space of rigid motions z : Q — R3 such that e(z) = 0 consists of translations and rigid rotations, and for a body in
3D, the space is six-dimensional.

The ambiguity of the solution of (1) can be removed by adding constraints by means of Lagrange multipliers that enforce
that the solution is free of rigid motions. When discretized, this approach yields an invertible saddle-point system. Alter-
natively, discretizing (1) directly leads to a symmetric, positive semidefinite matrix with a six-dimensional kernel. Singular
systems may be solved by iterative methods if care is taken to handle the kernel during the iterations, but a common
approach (here termed pinpointing) in the engineering literature (see, e.g., the DNV GL class guideline?) is to remove the
null space by prescribing the displacement in selected points of 0Q.

If 'y # 0Qand a Dirichlet boundary condition is prescribed on 0Q\I'y, the equations of linear elasticity are well-posed
(see, e.g., chapter 6.3 in the work of Braess’), and there exists a number of efficient solution algorithms for the problem.
Here, we discuss some of the methods for which the Neumann problem (1), or, more precisely, the correct treatment of
the rigid motions, is relevant.

In the context of algebraic multigrid (AMG), it is recognized already in the early work of Ruge and Stiiben® that carefully
constructed interpolators are needed to obtain good convergence for problems stemming from equations of linear elastic-
ity (partial differential equation systems in general). In particular, the authors observe that with the so-called “unknown”
approach convergence of AMG deteriorates when the number of Dirichlet boundaries decreases. The issue here is that
with the “unknown” approach, only the translations are interpolated well on the coarse grid (cf. the work of Baker et al.?),
and as a remedy, the authors propose to improve the interpolation of rotations (eigenvectors with small eigenvalues in
general). Griebel et al.!? construct a block interpolation where the rotations are captured exactly if the underlying grid is
point symmetric. However, this assumption fails to hold at the boundary nodes, and AMG becomes less effective as the
number of Neumann boundaries increases. More recently, Baker et al.® discusses computationally efficient techniques
for augmenting a given/existing AMG interpolator to ensure an exact interpolation of rigid motions (null space vectors in
general). A related approach is that by Vassilevski and Zikatanov,!! who derive algorithms for constructing AMG inter-
polation operators that exactly interpolate any given set of vectors. The requirement that the coarse space captures rigid
motions is also found in the later variants of AMG. For example, in smoothed aggregation AMG,'%!3 the coarse basis func-
tions are constructed from a (global) constrained minimization problem where preservation of the null space is one of the
constraints. The minimization problems solved in the construction of AMG based on element interpolation'4-1® use rigid
motions of the local stiffness matrices. Similarly, the kernel of local stiffness matrices is preserved by the approximate
splittings in AMG based on computational molecules.!7:!8

Given that the restriction and interpolation operators preserve the kernel exactly and that the initial residual does not
contain elements in the kernel, the singular problem at the coarsest level may be solved with Krylov methods, like the
conjugate gradient (CG) method, which then work well. To complete our (nonexhaustive) list, let us mention that in
the domain decomposition methods (e.g., finite element tearing and interconnecting'®), the Neumann problem (1) arises
naturally on “floating” subdomains that do not intersect the Dirichlet boundaries. Here, the local singular problem is
treated algebraically by a pseudoinverse (cf. the discussion in Section 4).

In the following, we aim to solve (1) with the finite element method (FEM) while using Krylov methods for the resulting
linear systems. As the systems are singular, the Krylov solvers are initialized with the null space of rigid motions (typically
in the form of the I* orthonormal set of vectors). In the standard implementation,* the Krylov methods employ the same
(%) projection to orthogonalize both the right-hand side as well as the solution vector with respect to the given null space. A
particular question that we address here is then whether these algorithms provide discrete approximations that converge
to the weak solution of (1) in the H! norm. We shall see that, in general, the answer is negative and that the issue stems
from the fact that in the context of FEM, a vector in R" can be associated with a function from the finite-dimensional
finite element space V,, c H', that is, it represents a solution/left-hand side, as well as with the functional from the

*See, for example, http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html.
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corresponding dual space, that is, it is a representation of the right-hand side. Consequently, two projectors are required
in the iterative method originating from a singular variational problem. However, standard implementations of Krylov
methods, which employ single projection, fail to make the distinction.

Rewriting the Krylov solvers to take the two representations into account is, in principle, a simple addition to the code.
However, it is also intrusive in the sense that it requires modification of perhaps the low-level code in the implemen-
tation of the Krylov solvers. To the best of our knowledge, this distinction is not implemented in state-of-the-art linear
algebra frameworks such as PETSc?® or hypre.?! Here, we therefore propose a simple alternative solution that is less intru-
sive, although it requires a priori information about the kernel. Alternative methods, which require less or no a priori
information, are the adaptive multigrid methods,???* where the null space is detected automatically during the solver
setup in an iterative process that identifies error components that the current solver cannot effectively reduce. Here, we
focus on the analysis of the Lagrange multiplier method and the CG method for the singular problem (1). Well-posedness
of both the methods is discussed, and robust preconditioners are established based on operator preconditioning.?*
Further, connections between the two methods and the question of whether they yield identically converging numeri-
cal solutions are elucidated. These methods rely on standard iterative solvers as they implicitly contain the two required
projectors.

This paper is structured as follows. In Section 2, the necessary notation is introduced, and shortcomings of pinpointing
and CG are illustrated by numerical examples. Section 3 discusses Lagrange multiplier formulation and the two precon-
ditioners for the method. Section 4 deals with the preconditioned CG method, and two preconditioners are proposed.
Further, it is revealed that if the continuous origin of the discrete problem is ignored, the method, in general, will not
yield convergent solutions. A continuous variational setting is introduced to modify the CG to yield a convergent method.
Section 5 discusses well-posedness and preconditioning of an alternative formulation of (1). The proposed formulation
leads to a symmetric, positive definite linear system. In Sections 3-5, we assume that A and u are of comparable mag-
nitude in order to put the focus on the proper handling of the rigid motions. In Section 6, we consider the case where
A > u. The focus here is on a well-known and simple technique to remove the problems of locking, namely, the mixed
formulation of linear elasticity where an extra unknown, the solid pressure, is introduced. We discuss two formulations
that yield robust approximation and preconditioning in A when care is taken in the proper handling of the rigid motions.
Finally, conclusions are drawn in Section 7.

2 | PRELIMINARIES

Let V be the Sobolev space of vector-valued (or scalar or tensor) functions, which, together with their weak derivatives of
order 1, are in space L*(Q). We denote by (-, -) the L?(Q) inner product of functions in V, whereas || - || is the corresponding
norm. For the L? inner product over boundary 0Q, we shall use the notation (-, -)sq. The standard inner product of V'is
u,v)1 = W,v) + (Vu, Vv),u,v € V,and ||-||; shall be the induced norm. For any Hilbert space V;, its dual space is denoted
as V', and we use capital or calligraphy letters to denote operators, for example, A : V— V'or A : (VX V) - (VX V).
Finally, (-, -) is the duality pairing between V' and V.

The space R" is considered with the I* inner product x'y = x;y; (invoking the summation convention), x, y € R” and
the norm |x| = \/xTx For clarity of notation, bold fonts are used to denote vectors and operators(matrices) in R" that
are representations of functions and operators from finite-dimensional finite element approximation space Vj, C V. Let
{¢:}}L, be the nodal basis of V.. The representations are obtained by mappings z, : V; — R" (the nodal interpolant) and
Un V}’! — R" such that forv € V,, f € V;l,we have

v=(m)¢; and (unf)i = (f, ). (3)

We refer to chapter 6 in the work of Mardal and Winther?* for a detailed discussion of the properties of the mappings,
for example, invertibility, and note here that M : V), —» V;l is represented by a matrix M = u,Mz,~!. In particular, the
mass matrix M, M;; = (¢, ¢;) represents the Riesz map with respect to the L? inner product, (Mu,v) = (u,v),u € V.
On the other hand, the duality pairing between V; and V}, is represented by the I inner product (f,v) = f'v, f = unfs
v = m,v. We remark that for V, set up on a sequence of nonuniformly refined triangulations of ©, the I* inner product
u'v, where v = z,v, u = m,u, may not provide a converging approximation of (u,v), and the distinction between the
two becomes crucial for the construction of converging methods.
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TABLE1 Convergence of the pinpointing approach for the singular
Poisson problem
d=2 d=3
Size |l —uplly # Size |lu—uply #
40,849 2.49E—01(1.00) 11 12,347 2.72E+00(1.22) 10
162,593 1.25E—01(1.00) 11 92,685 1.36E+00 (1.01) 11
648,769 6.23E—-02(1.00) 11 718,649 6.78E—01 (1.00) 12
2,591,873 3.11E-02(1.00) 12 5,660,913 3.39E—01(1.00) 12

Finally, Korn's inequalities on V = [Hl(Q)]3 andZt = (v € Vi(v,z) = 0Vz € Z},Z = {v € Vie(v) = 0} are
invoked (see Theorems 2.1 and 2.3 in the work of Ciarlet?>). There exists a positive constant C = C(Q) such that

Cllull? < lle@)* + llul®> YueV. @
There exists a positive constant C = C(£2) such that
Cllull} < lle@)* Vu € z*. 5)

To motivate our investigations and illustrate the lack of H* convergence that pinpointing or standard CG can lead to, we
present three numerical examples. That pinpointing can be a suitable method for treating a singular problem is shown in
the first example, which considers the Poisson problem with Neumann boundary conditions. However, pinpointing does
not work well with (1) as the second example shows. In the third example, the singular elasticity problem is finally solved
with a preconditioned CG.

Bochev and Lehoucg?® report an increase in the iteration count due to pinpointing for a CG method without a precon-
ditioner in the context of the singular Poisson problem. However, Krylov methods are, in practice, rarely applied without
a preconditioner. For this reason, Example 1 solves the singular Poisson problem in two and three dimensions by means
of pinpointing and a preconditioned CG.

Example 1. We consider Q = [0, 114, d = 2,3, and the singular Poisson equation
—Au=f inQ,
Vu-n=0 onoQ,

With the unique exact solution obtained by subtracting its mean value |Q|~! fgudx from a manufactured u. The value
of the exact solution is prescribed as a constraint for the degree of freedom at the (bottom) lower-left corner of the
domain, which is triangulated such that the computational mesh is refined toward the origin.

To discretize the system, continuous linear Lagrange elements’ from the FEniCS library?’ were used. The resulting
linear system was solved by the preconditioned CG method implemented in the PETSc library,?® using hypre AMG?! to
compute the action of the preconditioner. More specifically, we used a single V' cycle with one pre- and postsmoothing
by a symmetric successive over-relaxation smoother. The other AMG parameters were kept at their default settings,
for example, classical interpolation and Falgout coarsening.* The iterations were started from a random initial guess,
and a relative preconditioned residual magnitude of 107! was required for convergence.

The number of iterations together with error and convergence rates based on the H! norm are reported in Table 1.
Pinpointing yields numerical solutions uj, that converge at an optimal rate. Moreover, the number of iterations is
bounded. Unlike in the work of Bochev and Lehoucq,?® where specifying the solution datum in a single point was
found to lead to an increasing number of unpreconditioned CG iterations (both in 2D and 3D), here, we find that a
preconditioned CG with the system modified by pinpointing is a suitable numerical method for the singular Poisson
problem.

Following the performance of pinpointing in the singular Poisson problem, the same approach is now applied to (1) in
Example 2.

Example 2. We consider the singular elasticity problem (1) with u = 384, A = 577, and Q obtained by rigid defor-

mation of the box [—i, i] X [—% %] X [—% %] The box was first rotated around the x-, y-, and z-axes by angles % %,

*Unless stated otherwise, continuous linear Lagrange elements (P;) are used to discretize all the presented numerical examples.
*The settings for AMG were reused throughout all the numerical experiments presented in this paper.
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FIGURE1 Computational domain (blue) deformed by exaggerated (4x) analytical displacement used in the numerical examples. The
deformed body is colored by the magnitude of the displacement

TABLE 2 Convergence of the pinpointing approach for the singular elasticity problem
Size 30 1> 3> 3e
[l — |z # lu—upll # |l —upll # |l —uplly #
2187 6.69E—02(—0.02) 30 1.01E—01(-0.70) 32 2.82E—02(0.88) 24 2.89E—02(0.99) 25
14,739 1.27E—-01(-0.92) 35 9.61E—01(—3.25) 40 1.08E—02 (1.38) 28 1.35E-02(1.10) 29
107,811 2.57E—01(=1.02) 36 7.89E+00(—3.04) 48 1.72E—02(-0.66) 31 1.08E—02(0.31) 32
823,875 5.17E—01(-1.01) 41 6.36E+01(-3.01) 54 3.96E—02(-1.21) 33 1.82E—02(-0.75) 35

and % respectively. Afterward, it was translated by the vector (0.1,0.2,0.3). Starting from u* = i(sin %x, z3,—y), the
unique solution u of (1) is constructed by orthogonalizing u* with respect to the rigid motions of Q, where the orthog-
onality is enforced in the L? inner product, whereas the right-hand side f is manufactured by adding to —V - o(u) a
linear combination of rigid motions. Finally, we take o(u)- n as the surface force h. The solution is pictured in Figure 1.
We note that, in this example, a uniform triangulation is used.

To obtain from (1) an invertible linear system, the exact displacement was prescribed in four different ways (cf.
Table 2). (30) constrains six degrees of freedom in three corners of the body such that in the ith corner, there are i
components prescribed. This choice is motivated by the dimensionality of the space of rigid motions (cf. the DNV
GL class guideline®). The fact that fixing three points in space is sufficient to prevent the body from rigid motions
motivates (1 ), where all three components of displacement are prescribed on vertices of a single triangular ele-
ment on 0Q2. However, with mesh size decreasing, this constraint effectively becomes a constraint for a single point.
Thus, in (3 ), the displacement in three arbitrary triangles is fixed. Finally, in (3e), the displacement is prescribed in
three corners of the body.

The iterative solver used the same tolerances and parameters as in Example 1. In particular, identical settings of
the multigrid preconditioner were utilized, and the iterations were started from a random initial vector. We note that
AMG was not initialized with the rigid motions.

The number of iterations together with error and convergence rates based on the H! norm are reported in Table 2.
Note that all the considered pinpointing strategies lead to moderately increased iteration counts. The increase is most
notable for (1 >), which effectively constrains a single point as the mesh is refined. On the other hand, strategies (3 )
and (3e), which always constrain all three components of the displacement in at least three points, yield the slowest
growth rates. However, neither strategy yields convergent numerical solutions. In fact, the numerical error can often
be seen to increase with resolution.

In the final example, a preconditioned CG method will be applied to solve the singular elasticity problem with data
such that the compatibility conditions (2) are met.

Example 3. We consider a modified problem from Example 2, where fis not perturbed by rigid motions. As the data
satisfy (2), the discrete linear system is solvable and amenable to a solution by the preconditioned CG method. To this
end, the rigid motions are passed to the CG solver via the PETSc interface.® The mass or identity matrix is added to
the singular system matrix in order to obtain a positive definite matrix in the construction of the preconditioner based
on AMG. The first choice can be viewed as a simple mean to get an invertible system, whereas the motivation for the

$See MatSetNullSpace (http://www.mcs.anl.gov/petsc/petsc-3.5/docs/manualpages/Mat/MatSetNullSpace.html).
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TABLE 3 Convergence of the preconditioned conjugate gradient method for the singular elasticity problem.
Positive definite preconditioners using the mass and identity matrices to get a nonsingular system are considered.
The maximum number of iterations is set to 150. The iterations are unbounded in both cases. Solutions due to a
preconditioner using the identity matrix converge at a nearly optimal rate

Size AMG(A + M) AMG(A + 1)
Kernel not removed Kernel removed Kernel not removed Kernel removed
[l —uplly #  |lu—upll #  |lu—uyll; # [l —uplly #

2,187  197E-02(0.26) 17 5.08E-03(0.99) 17 111E-02(0.87) 21 5.08E-03(0.99) 21
14,739  2.58E—02(—0.39) 19 229E—03(1.15) 19 2.87E—03(1.95) 35 229E—03(1.15) 35
107,811 2.80E—02(-0.12) 34 1.06E—03(1.11) 34 1.21E—03(1.24) 81 1.06E—03(1.11) 81
823,875 2.82E—02(-0.01) 53 512E—04(1.04) 54 6.32E—04(0.94) >150 5.12E—04(1.04) >150

Note. AMG = algebraic multigrid.

latter is the functional setting to be discussed later in Theorem 1. Moreover, for each preconditioner, two cases are
considered where either the converged vector is postprocessed by removing from it the components of the null space
or no postprocessing is applied. We note that, in this example, the iterations are started from a zero initial vector, and
the relative tolerance of 10710 is used as a convergence criterion. The number of iterations together with error and
convergence rates based on the H' norm are reported in Table 3. We observe that the method with the mass matrix
(cf. with the left pane of the table) yields convergent solutions only if postprocessing is applied. On the other hand,
solutions with the preconditioner based on the identity matrix converge in the H! norm even if no postprocessing is
used. The observation that the Krylov iterations/preconditioners respectively do and do not introduce rigid motions
(recall that the initial guess and the right-hand side are orthogonal to the kernel) is related to the properties of the
added matrices. A vector free of rigid motions remains orthogonal after applying to it the identity matrix. This property,
in general, does not hold for the (not diagonal) mass matrix.

Examples 1-3 have illustrated some of the issues that might be encountered when solving the singular problem (1)
with the FEM. In particular, the following questions may be posed: (a) What is the cause of the poor convergence prop-
erties of pinpointing? (b) What should be the order optimal preconditioner for CG? (¢) What should be the order optimal
preconditioner for the Lagrange multiplier formulation?

With questions (b) and (c) answered in detail in the remainder of the text, let us briefly comment on the first question.
As will become apparent, the singular problem with a known kernel, such as (1), possesses all the information neces-
sary to formulate a well-posed problem and a convergent numerical method. In this sense, coming up with a datum to
be prescribed in the pinpointed nodes is theoretically redundant, but usually required for implementation. Further, as
pointed out in the work of Bochev and Lehoucq,? there are stability issues with prescribing point values of H! functions
for d > 2. However, we have not explored the settings of HypreAMG or other realizations of the preconditioner that
could potentially improve the convergence properties of the method in Example 2. In this sense, the two-level precondi-
tioner of Vanek et al.?8 is interesting as the proposed method results in bounded CG iterations even with the variationally
problematic point boundary conditions.

3 | LAGRANGE MULTIPLIER FORMULATION

LetZcCV = [H 1(Q)] > denote the space of rigid motions of Q. For compatible data, a unique solution u of (1) is required
to be linearly independent of functions in Z. To this end, a Lagrange multiplier p € Z is introduced, which enforces the
orthogonality of u with respect to Z. The constrained variational formulation of (1) seeks u € V,p € Z such that

2ue(u), e)) + AV -u, V-v)—(p,v) = (f,v) + (h,v)s0 Ywev,

6
—(u.q)=0 Vge Z. ©

INote that (h,v),q stands for the integral /mh -vds.
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Equation (6) defines a saddle-point problem for (u,p) € W, W = V X Z satisfying

A3)=(7)()=() o

where [ € V' such that (l,v) = (f,v) + (h,V)sq and operators A : V — V', B : Z — V' are defined in terms of bilinear
forms
a(u,v) =2pu(e(u), e()) + A(V-u,V-v) and b(u,q) = (u,q) (8)

as (Au,v) = a(u,v) and (Bq,u) = —b(u, q). We note that, in (7), the operator B’ is the adjoint of B.
The existence and uniqueness of the solution to (7) follows from the Brezzi theory?® (see also Chapter 3.4 in the work
of Braess”). The proof shall utilize the inequalities given in Lemma 1.

Lemma 1. Let u € V be arbitrary and w(u) be the skew-symmetric part of the displacement gradient Vu, that is,
o) = %((Vu) — (Vu)T). Then, we have

le@)ll < IVull and [lo@)|| < ||Vull, (92)
IV - ull < V3[IVull, (9b)
3C = C() such that ||z]l; < C|lzll Vz e Z. (9¢)

Proof. Inequality (9a) follows from the orthogonal decomposition Vu = e(u) + w(u). Inequality (9b) follows by direct
calculations. To establish the final inequality, we first note that (9c) clearly holds for rigid motions that are translations
with constant C = 1. To verify it for rigid rotations, we consider the representation z = Sx for some arbitrary
skew-symmetric matrix S € R3*3, Then, by definition, w(Sx) = S so that (w(z), (z)) = |S|?|Q|, with |S| = 4/tr(STS)
as the Frobenius norm. In turn, we have
(x,X) (x,x)
llzll* = (Sx. Sx) = [S]*(x,x) = ap @@ e@) = cDIVall?, @) = ol (10)

as e(z) = 0. Therefore, (9¢) holds for all rotations. We remark that the constant ¢ in (10) is related to the moment of
inertia of the body. Finally, the statement follows with a constant C(2) = /1 + ¢(Q) from the decomposition of any
Z € Zinto translations and rotations. O

Theorem 1. Let f, h such thatl € V'. Then, there exists a unique solutionu € V,p € Z of (7).

Proof. We proceed by establishing the Brezzi constants. First, the bilinear form a is shown to be bounded with respect
to || - ||1. Indeed, by the Cauchy-Schwarz inequality and inequalities (9a) and (9b), for any u,v € V, we have

a(u,v) = 2u(e),e) + AV - u, V- v) < 2ulle@)llle@)|l + AV - ull|V - vI|
< QuA3HIVVIIVUll < @ [lully vl
with a* = 24 + 3u. The ellipticityofaon Z+ = {v € V;(v,2) = 0Vz € Z} = {v € V;b(v,p) = 0Vp € Z} follows
from Korn's inequality (5). Since 4 > 0 by assumption, we have
a(u, u) = 2ulle@|* + AV - ull> 2 2ulle@|® > allull} Vue Z*,

with @, = 2uC and C = C(Q) as the constant from (5). The boundedness of b with a constant f* = 1 follows from
the Cauchy-Schwarz inequality. Finally, using (9c), for arbitrary p € Z, we have

bw.p) _ (.p) _ ol 1
P, @p) . Wplk 1,
L = el = Clpl ~ ©

so that the inf-sup condition holds with g, = C~!, with C as the constant from (9c). O

We remark that Theorem 1 implies that the operator A : W — W’ from (7) is an isomorphism. In particular, con-
ditions (2) need not hold for there to exist a unique solution of (6). In order to find the solution of the well-posed (7)
numerically, conditions from Theorem 1 must hold with discrete subspaces V), and Z, (see the work of Fortin®® or
Chapter 3.4 in the work of Braess’). Typically, satisfying the discrete inf-sup condition presents an issue and requires the
choice of compatible finite element discretization of the involved spaces, for example, Taylor-Hood or MINI elements!
for the Stokes equations. For the conforming discretization Vj, C V, Z,, = Z, the following result shows that the discrete
inf-sup condition holds.
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Theorem 2. Let Z, = Z, Vi, C V and b be the bilinear form defined in (8). Then, there is a constant f3, independent of
; b(v.p)
h such that infyez, sup,ey, - lpl > P
Proof. The proof mirrors the continuous inf-sup condition in Theorem 1. Let p € Z, be given. Since Z = Z;, C V},,
by takingv = p, we get
bv.p) _ @.p) _ Pl _ 1
p > > = =lpll,
vev, lvIli ~ llpll — Clipll €

where C is the constant from (9c¢). O

Following Theorems 1 and 2 and operator preconditioning,?*3? the Riesz map B; : W/ — W with respect to the inner
product (u,v); + (p,q) with (u,p),(v,q) € W

-1
&=<H1>, H:V -V (Huv)=@vn and I:Z-Z(Ip.q)=(p.9 D

defines a preconditioner for discretized (7) whose condition number is independent of h. This follows from the Brezzi
constants in Theorems 1 and 2 being free of the discretization parameter.

Since applying the preconditioner (11) requires an inverse of the 6 X 6 mass matrix of the space rigid motions, it is
advantageous to choose a basis of Z in which the matrix is well conditioned. With the choice of an L? orthonormal basis,
the obtained mass matrix is an identity, and we shall therefore briefly discuss the construction of such a basis.

3.1 | Construction for orthonormal basis of rigid motions

3

Consider a unit cube Q = [—% %] centered at the origin. Denoting e;, i = 1,2, 3, as the canonical unit vectors, the set
Zeg = {ej,er,e3,x Xe, x Xey, x Xez}

constitutes an orthonormal basis of the rigid motions of Q with respect to the L? inner product. Clearly, the basis for an

arbitrary body can be obtained from Zag by a Gram-Schmidt process. However, we shall advocate here a construction
derived from physical considerations. The construction was originally presented by Kuchta et al.*3

Lemma 2. Letc = |Q|7'(x, 1) be the center of mass of Q; Iq be the tensor of inertia (see chapter 4 in the work of Gurtin#)
of Q with respect to c, that is,

Io = /I(x—c)T(x—c)+(x—c)®(x—c)dx;
Q
and (A;,v;), i = 1,2, 3, be the eigenpairs of the tensor. Then, the set

-1 -1 -1
zg={mr%MQﬁmewa;a—@wa;u—owa;u—oxw} (12)
is the L* orthonormal basis of rigid motions of Q.

Proof. Note that, by construction, I is a symmetric positive definite tensor. Thus, 4; > 0, and there exists a complete
set of eigenvectors v;'v; = §;;. We proceed to show that the Gram matrix of the proposed basis is an identity. First,
(vi,v;) = |Q|é;; by orthonormality of the eigenvectors. Further, for ((x — ¢) X v;,v)) = (v X v;,(x — ¢)) and in the
nontrivial case i # j, the product is zero since c is the center of mass. Finally, (x —¢) Xv;, X —¢) Xv;) = v; " Iqv; = 4.

O

We remark that the rigid motions of the body are in the constructed basis given in terms of translations along and
rotations around the principal axes of the tensor that describes its rotational kinetic energy.

Note also that the construction can be generalized to yield an orthonormal basis with respect to different inner products.
In particular, let Z;, = span{zk}iz1 C V}, be functions approximating some basis of Z. For u,v € Vj,letu = z,u and
v = v be coefficient vectors in the nodal basis of V},. The I* orthonormal basis of Z,, can be created using Lemma 2
by replacing (u,v) with u"v. The differences between the bases are shown in Figure 2, where the defining principal axes
of the L? and I* orthonormal bases of rigid motions are drawn. If Q is uniformly triangulated, the bases are practically
identical. However, the [* basis changes in the presence of a nonuniform mesh refinement.
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FIGURE 2 Computational domains considered in the numerical examples for linear elasticity are obtained by uniformly refining the
parent mesh. (Left) Parent is close to uniformly triangulated. (Right) The parent mesh is refined near a single edge of the domain. The blue
and red arrows indicate the principal axes of the tensor I (cf. Lemma 2), defined using the L2 and I* inner products. Axes are drawn from the
center of mass computed using the respected inner products. Only the L? basis is stable upon change of triangulation from uniform (left) to
nonuniform (right)

Formulation of problem (6) with respect to an L? orthonormal basis {z; }2=1 of the space of rigid motions results in the
mapping between Z and RS, being an isometry. In turn, if the discretized problem is considered with space Vj, x R® and its
natural norm, the Brezzi constants will be those obtained in Theorem 2. On the other hand, for a nonorthonormal basis
only, equivalence between the norms holds: There exists C;, C; > 0 such that, forall p € Z, we have

6
Cilel < lpll < Calel,  p= ) ez,
k=1

and the constants C; and C, enter the estimates in the Brezzi theory. For an unfortunate choice of the basis, it is then
possible that C; = Cj(h) or C, = C,(h), leading to the mesh-dependent performance of a preconditioner using the 2
norm for (the Lagrange multiplier space) RS.

Returning to preconditioner (11), recall that the Brezzi constants a*, . depend on the Lamé constants, and thus, B;
does not define a parameter robust preconditioner. To address the dependence on material parameters, we shall, at first,
assume that y and A are comparable in magnitude. The case 4 > pu is postponed until Section 6.

3.2 | Robust preconditioning of the singular problem

Parameter robust preconditioners for the Lagrange multiplier formulation of the singular elasticity problem (6) can be
analyzed by the operator preconditioning framework of Mardal and Winther.?* The preconditioners are constructed by
considering (7) in parameter-dependent spaces (see, e.g., the work of Bergh and Lofstrom33), which are equivalent with
V as a set, but the topology of the spaces is given by different parameter-dependent norms. Two such norms, leading to
two different preconditioners, are constructed next.

Foru € V, consider the orthogonal decomposition u = uz + uz:., where u, € Zand u,: € Z*. Bilinear forms (-, -)g and
(-, )m over V are defined in terms of A from (7) and operators Y : V— V' andM : V— V' as

(Yu,v) = (uz,vz), u, Vg = (Au,v) + (Yu,v),

(13)
(Mu,v) = (u,v), w,v)yy = (Au,v) + (Mu,v).

The forms (13) define functionals || - ||z and || - ||ar over V such that

lulle = Vw,we and |lully = VU, wnp. (14)

Lemma 3. Let|| - ||z and || - || be the functionals (14). Then, || - ||z and || - ||a define norms on V, which are equivalent
with the H' norm.

Proof. From the orthogonal decomposition of u € V; it follows that [|u]| 12\4 = u||125 + |luz: ||*. Together with Lemma 1,
we thus establish
Nully < llully, < @u+3i+Dull; VueV.
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To complete the equivalence, let C = C(Q2) be the constant from Korn's inequality (4). Then, for all u € V, we have
llully; = 2plle@l* + lJull® = cllull?,

with ¢ = Cfor2u > 1andc = 2uC otherwise. Finally, for the equivalence of the E-norm, Korn's inequality on Z*
(see (5) and Theorem 1) yields

lully = 2ulle@]* + ANV - ull® > 2uCllull} Vue Z*
with C = C(Q), whereas using (9¢) in Lemma 1 gives
llulle = llull = Cr(E)|lullx

for any u € Z. Thus, E and H! norms are equivalent on Z* and Z, respectively. The proof is completed by observing
that uz and uz. satisfy (uz, uz:)g = 0 so that

lullf = 2ulleuzoll> + AV - uze|I” + lluzll* = 2uClluz: |IF + Crlluzll; = ¢ (luz: 11} + luzll?) ,

¢ = min(2uC, Cy), whereas for the H' inner product, [|ull? < 2([luz:||? + [luz||?) holds. Thus, |lul% > §||u||% for
allu e V.
O

Using equivalent norms of V from Lemma 3, we readily establish equivalent norms for the product space W = V x Z,

that is,
Iwlle = I, p)lle = \/llullz + lIplI2 and  [wlix = I p)llme = 1/ llull3, + lIplI2, (15)

and consider as preconditioners for (7) the operators By : W — W and By, : W' — W, that is,

-1 -1
BE=<A+YI> and BM=<A+MI> . (16)

Note that the mappings (16) are the Riesz maps with respect to the inner products that induce norms (15). We proceed
with the analysis of the properties of Bg.

Theorem 3. Let A : W — W’ be the operator and the space from (7) and W be the space W considered with the
I - |z norm (15). Then, A : Wg — W/, is an isomorphism. Moreover, the Riesz map Bg : W, — Wg in (16) defines the
canonical preconditioner for (7).

Proof. We shall show that the first assertion holds by establishing the Brezzi constants. Recall the definition of the
bilinear form a given in (8). Then, by the Cauchy-Schwarz inequality and (9a) in Lemma 1, the inequality a(u,v) <
va(u,u)y/a,v) holds for any u,v € V. In turn, for allu,v € V, we have

a(u,v) < Vaw, uvaw,v) < Vau,u) + (uz, uz)Vaw,v) + (vz,vz) = llullglvlz

and a is bounded with respect to the E norm with a constant «* = 1. Further,u; = Oforu € Z*. Hence, a(u, u) =
a(u,u) + (uz,uz) = ||u||é forallu € Z%, and the form is E elliptic on Z* with constant a* = 1. To compute the
boundedness constant of the form b, the orthogonal decomposition u = uz + uz. is used so that, forallu € V,q € Z,
we have

b(u,q) = (uz + uz,q) = (uz,q) < lluzllligll = Va, w) + lluzll*ligll = llullglqll,
and we have g* = 1. Finally, taking any g € Z and settingu = qin

b(u, q) q.9) llqll?
sup > = > llqll,
wev lulle " va(q. @) + (7.0 VO+1IqlP
the inf-sup condition holds with f#, = 1. As all the constants are independent of material parameters, the second

24).
O

assertion follows from the first one by operator preconditioning (see chapter 5 in the work of Mardal and Winther

Using Theorem 3, it is readily established that the condition number of the composed operator Bg.A : W — W isequal
to 1. We further note that discretizing operator B leads to discrete null space preconditioners as in chapter 6 in the work
of Benzi et al.3¢

While the spectral properties of By are appealing, the preconditioner is impractical. Consider Bg as a matrix rep-
resentation of the Galerkin approximation of Bg in W), ¢ W. Then, By = diag(A+YY",I)7!, where Y = R"™S,
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Ye = colyY = mpzi, and zx € V), is the function from the L? orthogonal basis of the space of rigid motions. Due to the
second (nonlocal) term, the matrix A + YY" is dense. Further, as shall be discussed in Section 4, inverting the operator
requires computing (the action of) the pseudoinverse of the singular matrix A. The mapping By, on the other hand, leads
to a more practical preconditioner.

Theorem 4. Let A : W — W’ be the operator and space defined in (7) and Wy, be defined analogically to Theorem 3.
Then, A : Wy — W, is an isomorphism. Moreover, the Riesz map By : W, — Wy in (16) defines a parameter robust
preconditioner for (7).

Proof. As in the proof of Theorem 3, we establish that a(u,v) < ||u||u||[v]|g for all u,v € Vand b(v,p) < |v||lIpll <
[Vllmllpll forallv € V,p € Z. Settingv = p € Zthenyieldsinf pez sup ver ”vb“(v—’ﬁ;” > 1. For M ellipticity of a on Z+,
M

assume the existence of C = C(Q) such that ||u||> < C|le(w)||? for allu € Z*. Then, on Z*, we have

lull> < Clle@)||* < Culle@)lI> < C (2ulle@)* + AlIV - ull?) = Cllull;

and

llullf; = lullg + lull® < (C + Dilullz
so that a(u,u) = ||ull, > (14 C)~!||ull3,. Finally, we comment on the assumption of the existence of constant C.
Assume the contrary. Then, there is u € Z* such that ||e(w)|| = 1, |[w(w)|| = 0 and the ||u|| unbounded. However,
such u violates Korn's inequality (5). O

We remark that Theorem 4 required an additional assumption 2u > 1. The assumption is not restrictive as it can be
always achieved by scaling the equations such that the inequality is satisfied. Note also that with the orthonormal basis
of rigid motions, the discrete preconditioner based on By, is such that By, = diag(A + M, I), with M as the mass matrix.
The system to be assembled is therefore sparse.

Following Theorem 4, the condition number of the preconditioned operator By.A : W — W depends solely on constant

C from Korn's inequality (5). An approximation for the constant is provided by the smallest positive eigenvalue A'. of

(2°)(3)=(*0) 3)

In Table Al of the Appendix, the constant has been computed for two different domains: a cube from Example 2 and a
hollow cylinder. In both cases, C ~ 1 can be observed.

In order to demonstrate h robust properties of B, the problem from Example 2 is considered with the basis from
Section 3.1 and discretized on V};, C V. The resulting preconditioned linear system is solved by the minimal residual
(MinRes) method?” as implemented in cbc.block, the FEniCS library for block matrices®® using as the preconditioner

< AMG(A + M) >
By 1)

More specifically, the preconditioner uses a single AMG V cycle with one pre- and postsmoothing by a symmetric succes-
sive over-relaxation smoother. The rigid motions were not passed to the routine on initialization. The saddle-point system
was assembled and inverted” using che.block. The results of the experiment are presented in Table 5. Clearly, the num-
ber of iterations required for convergence is independent of the discretization. Moreover, the method yields numerical
solutions that converge in the H' norm at the optimal rate! on both the uniform and nonuniform meshes (cf. Figure 2).
A drawback of the Lagrange multiplier formulation is the cost of solving the resulting indefinite linear system. Fol-
lowing, for example, chapter 7.2 in the work of Greenbaum,? let the condition number of a Hermitian matrix A be
K(A) = Amax(A)/Amin(A), where Amax(A) and Amin(A) are the largest and smallest (in magnitude) eigenvalues of the matrix,
respectively. For A as Hermitian indefinite and under simplifying assumptions on th