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Summary

The Neumann problem of linear elasticity is singular with a kernel formed by
the rigid motions of the body. There are several tricks that are commonly used
to obtain a nonsingular linear system. However, they often cause reduced accu-
racy or lead to poor convergence of the iterative solvers. In this paper, different
well-posed formulations of the problem are studied through discretization by the
finite element method, and preconditioning strategies based on operator precon-
ditioning are discussed. For each formulation, we derive preconditioners that
are independent of the discretization parameter. Preconditioners that are robust
with respect to the first Lamé constant are constructed for the pure displacement
formulations, whereas a preconditioner that is robust in both Lamé constants is
constructed for the mixed formulation. It is shown that, for convergence in the
first Sobolev norm, it is crucial to respect the orthogonality constraint derived
from the continuous problem. On the basis of this observation, a modification
to the conjugate gradient method is proposed, which achieves optimal error
convergence of the computed solution.
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1 INTRODUCTION

This paper discusses numerical techniques for solving the singular problem of linear elasticity. Let Ω ⊂ ℝ3 be the body
subjected to volume forces 𝑓 ∶ Ω → ℝ3 and surface forces h ∶ 𝜕Ω → ℝ3. The body's displacement u ∶ Ω → ℝ3 is then
found as a solution to

−∇ · 𝜎(u) = 𝑓 in Ω,
𝜎(u) = 2𝜇𝜖(u) + 𝜆(∇ · u)I in Ω,
𝜎(u) · n = h on ΓN = 𝜕Ω,

(1)

with 𝜇 > 0 and 𝜆 ≥ 0 as the Lamé constants of the material, I as the identity matrix, 𝜖(u) = 1
2

(
∇u + (∇u)⊤

)
as the strain,

and n as the outward-pointing surface normal (see the work of Marsden and Hughes1). We note that the constitutive law
for the stress tensor 𝜎 can be equivalently stated as 𝜎(u) = 2𝜇𝜖(u) + 𝜆tr(𝜖(u))I, where tr(𝜖(u)) denotes the trace of 𝜖(u),
that is, the sum of its diagonal.

The system is used extensively in structural analysis2 and is relevant in numerous applications, for example, marine
engineering,3 biomechanics of brain,4 spine,5 or the mechanics of planetary bodies.6

Due to the absence of a Dirichlet boundary condition that can anchor the body (coordinate system) in space, the solution
can be uniquely determined if and only if the net force and the net torque on Ω are zero, that is, the forces f and h satisfy
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the compatibility conditions

∫
Ω

𝑓 dx + ∫
𝜕Ω

hds = 0,

∫
Ω

𝑓 × x dx + ∫
𝜕Ω

h × x ds = 0.
(2)

With such compatible data, the now solvable (1) is singular as any rigid motion can be added to the solution. We note that
the space of rigid motions z ∶ Ω → ℝ3 such that 𝜖(z) = 0 consists of translations and rigid rotations, and for a body in
3D, the space is six-dimensional.

The ambiguity of the solution of (1) can be removed by adding constraints by means of Lagrange multipliers that enforce
that the solution is free of rigid motions. When discretized, this approach yields an invertible saddle-point system. Alter-
natively, discretizing (1) directly leads to a symmetric, positive semidefinite matrix with a six-dimensional kernel. Singular
systems may be solved by iterative methods if care is taken to handle the kernel during the iterations, but a common
approach (here termed pinpointing) in the engineering literature (see, e.g., the DNV GL class guideline3) is to remove the
null space by prescribing the displacement in selected points of 𝜕Ω.

If ΓN ≠ 𝜕Ω and a Dirichlet boundary condition is prescribed on 𝜕Ω⧵ΓN, the equations of linear elasticity are well-posed
(see, e.g., chapter 6.3 in the work of Braess7), and there exists a number of efficient solution algorithms for the problem.
Here, we discuss some of the methods for which the Neumann problem (1), or, more precisely, the correct treatment of
the rigid motions, is relevant.

In the context of algebraic multigrid (AMG), it is recognized already in the early work of Ruge and Stüben8 that carefully
constructed interpolators are needed to obtain good convergence for problems stemming from equations of linear elastic-
ity (partial differential equation systems in general). In particular, the authors observe that with the so-called “unknown”
approach convergence of AMG deteriorates when the number of Dirichlet boundaries decreases. The issue here is that
with the “unknown” approach, only the translations are interpolated well on the coarse grid (cf. the work of Baker et al.9),
and as a remedy, the authors propose to improve the interpolation of rotations (eigenvectors with small eigenvalues in
general). Griebel et al.10 construct a block interpolation where the rotations are captured exactly if the underlying grid is
point symmetric. However, this assumption fails to hold at the boundary nodes, and AMG becomes less effective as the
number of Neumann boundaries increases. More recently, Baker et al.9 discusses computationally efficient techniques
for augmenting a given/existing AMG interpolator to ensure an exact interpolation of rigid motions (null space vectors in
general). A related approach is that by Vassilevski and Zikatanov,11 who derive algorithms for constructing AMG inter-
polation operators that exactly interpolate any given set of vectors. The requirement that the coarse space captures rigid
motions is also found in the later variants of AMG. For example, in smoothed aggregation AMG,12,13 the coarse basis func-
tions are constructed from a (global) constrained minimization problem where preservation of the null space is one of the
constraints. The minimization problems solved in the construction of AMG based on element interpolation14–16 use rigid
motions of the local stiffness matrices. Similarly, the kernel of local stiffness matrices is preserved by the approximate
splittings in AMG based on computational molecules.17,18

Given that the restriction and interpolation operators preserve the kernel exactly and that the initial residual does not
contain elements in the kernel, the singular problem at the coarsest level may be solved with Krylov methods, like the
conjugate gradient (CG) method, which then work well. To complete our (nonexhaustive) list, let us mention that in
the domain decomposition methods (e.g., finite element tearing and interconnecting19), the Neumann problem (1) arises
naturally on “floating” subdomains that do not intersect the Dirichlet boundaries. Here, the local singular problem is
treated algebraically by a pseudoinverse (cf. the discussion in Section 4).

In the following, we aim to solve (1) with the finite element method (FEM) while using Krylov methods for the resulting
linear systems. As the systems are singular, the Krylov solvers are initialized with the null space of rigid motions (typically
in the form of the l2 orthonormal set of vectors). In the standard implementation,* the Krylov methods employ the same
(l2) projection to orthogonalize both the right-hand side as well as the solution vector with respect to the given null space. A
particular question that we address here is then whether these algorithms provide discrete approximations that converge
to the weak solution of (1) in the H1 norm. We shall see that, in general, the answer is negative and that the issue stems
from the fact that in the context of FEM, a vector in ℝn can be associated with a function from the finite-dimensional
finite element space Vh ⊂ H1, that is, it represents a solution/left-hand side, as well as with the functional from the

*See, for example, http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html.
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corresponding dual space, that is, it is a representation of the right-hand side. Consequently, two projectors are required
in the iterative method originating from a singular variational problem. However, standard implementations of Krylov
methods, which employ single projection, fail to make the distinction.

Rewriting the Krylov solvers to take the two representations into account is, in principle, a simple addition to the code.
However, it is also intrusive in the sense that it requires modification of perhaps the low-level code in the implemen-
tation of the Krylov solvers. To the best of our knowledge, this distinction is not implemented in state-of-the-art linear
algebra frameworks such as PETSc20 or hypre.21 Here, we therefore propose a simple alternative solution that is less intru-
sive, although it requires a priori information about the kernel. Alternative methods, which require less or no a priori
information, are the adaptive multigrid methods,22,23 where the null space is detected automatically during the solver
setup in an iterative process that identifies error components that the current solver cannot effectively reduce. Here, we
focus on the analysis of the Lagrange multiplier method and the CG method for the singular problem (1). Well-posedness
of both the methods is discussed, and robust preconditioners are established based on operator preconditioning.24

Further, connections between the two methods and the question of whether they yield identically converging numeri-
cal solutions are elucidated. These methods rely on standard iterative solvers as they implicitly contain the two required
projectors.

This paper is structured as follows. In Section 2, the necessary notation is introduced, and shortcomings of pinpointing
and CG are illustrated by numerical examples. Section 3 discusses Lagrange multiplier formulation and the two precon-
ditioners for the method. Section 4 deals with the preconditioned CG method, and two preconditioners are proposed.
Further, it is revealed that if the continuous origin of the discrete problem is ignored, the method, in general, will not
yield convergent solutions. A continuous variational setting is introduced to modify the CG to yield a convergent method.
Section 5 discusses well-posedness and preconditioning of an alternative formulation of (1). The proposed formulation
leads to a symmetric, positive definite linear system. In Sections 3–5, we assume that 𝜆 and 𝜇 are of comparable mag-
nitude in order to put the focus on the proper handling of the rigid motions. In Section 6, we consider the case where
𝜆 ≫ 𝜇. The focus here is on a well-known and simple technique to remove the problems of locking, namely, the mixed
formulation of linear elasticity where an extra unknown, the solid pressure, is introduced. We discuss two formulations
that yield robust approximation and preconditioning in 𝜆 when care is taken in the proper handling of the rigid motions.
Finally, conclusions are drawn in Section 7.

2 PRELIMINARIES

Let V be the Sobolev space of vector-valued (or scalar or tensor) functions, which, together with their weak derivatives of
order 1, are in space L2(Ω). We denote by (·, ·) the L2(Ω) inner product of functions in V, whereas || · || is the corresponding
norm. For the L2 inner product over boundary 𝜕Ω, we shall use the notation (·, ·)𝜕Ω. The standard inner product of V is
(u, v)1 = (u, v) + (∇u,∇v), u, v ∈ V, and ||·||1 shall be the induced norm. For any Hilbert space V, its dual space is denoted
as V ′, and we use capital or calligraphy letters to denote operators, for example, A ∶ V → V ′ or  ∶ (V × V) → (V × V)′.
Finally, ⟨·, ·⟩ is the duality pairing between V ′ and V.

The space ℝn is considered with the l2 inner product x⊤y = xi yi (invoking the summation convention), x, 𝑦 ∈ ℝn and
the norm |x| = √

x⊤x. For clarity of notation, bold fonts are used to denote vectors and operators(matrices) in ℝn that
are representations of functions and operators from finite-dimensional finite element approximation space Vh ⊂ V . Let
{𝜙i}n

i=1 be the nodal basis of Vh. The representations are obtained by mappings 𝜋h ∶ Vh → ℝn (the nodal interpolant) and
𝜇h ∶ V ′

h → ℝn such that for v ∈ Vh, 𝑓 ∈ V ′
h, we have

v = (𝜋hv)i𝜙i and (𝜇h𝑓 )i = ⟨𝑓, 𝜙i⟩. (3)

We refer to chapter 6 in the work of Mardal and Winther24 for a detailed discussion of the properties of the mappings,
for example, invertibility, and note here that M ∶ Vh → V ′

h is represented by a matrix M = 𝜇hM𝜋h
−1. In particular, the

mass matrix M, Mi j = (𝜙j, 𝜙i) represents the Riesz map with respect to the L2 inner product, ⟨Mu, v⟩ = (u, v), u ∈ Vh.
On the other hand, the duality pairing between V ′

h and Vh is represented by the l2 inner product ⟨ f, v⟩ = f⊤v, f = 𝜇h f,
v = 𝜋hv. We remark that for Vh set up on a sequence of nonuniformly refined triangulations of Ω, the l2 inner product
u⊤v, where v = 𝜋hv, u = 𝜋hu, may not provide a converging approximation of (u, v), and the distinction between the
two becomes crucial for the construction of converging methods.
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TABLE 1 Convergence of the pinpointing approach for the singular
Poisson problem

d= 2 d= 3
Size ||u−uh||𝟏 # Size ||u−uh||𝟏 #

40,849 2.49E− 01 (1.00) 11 12,347 2.72E + 00 (1.22) 10
162,593 1.25E− 01 (1.00) 11 92,685 1.36E + 00 (1.01) 11
648,769 6.23E− 02 (1.00) 11 718,649 6.78E− 01 (1.00) 12
2,591,873 3.11E− 02 (1.00) 12 5,660,913 3.39E− 01 (1.00) 12

Finally, Korn's inequalities on V =
[
H1(Ω)

]3 and Z⟂ = {v ∈ V; (v, z) = 0∀z ∈ Z}, Z = {v ∈ V; 𝜖(v) = 0} are
invoked (see Theorems 2.1 and 2.3 in the work of Ciarlet25). There exists a positive constant C = C(Ω) such that

C||u||21 ≤ ||𝜖(u)||2 + ||u||2 ∀u ∈ V . (4)

There exists a positive constant C = C(Ω) such that

C||u||21 ≤ ||𝜖(u)||2 ∀u ∈ Z⟂. (5)

To motivate our investigations and illustrate the lack of H1 convergence that pinpointing or standard CG can lead to, we
present three numerical examples. That pinpointing can be a suitable method for treating a singular problem is shown in
the first example, which considers the Poisson problem with Neumann boundary conditions. However, pinpointing does
not work well with (1) as the second example shows. In the third example, the singular elasticity problem is finally solved
with a preconditioned CG.

Bochev and Lehoucq26 report an increase in the iteration count due to pinpointing for a CG method without a precon-
ditioner in the context of the singular Poisson problem. However, Krylov methods are, in practice, rarely applied without
a preconditioner. For this reason, Example 1 solves the singular Poisson problem in two and three dimensions by means
of pinpointing and a preconditioned CG.

Example 1. We consider Ω = [0, 1]d, d = 2, 3, and the singular Poisson equation

−Δu = 𝑓 in Ω,
∇u · n = 0 on 𝜕Ω,

With the unique exact solution obtained by subtracting its mean value |Ω|−1∫Ωudx from a manufactured u. The value
of the exact solution is prescribed as a constraint for the degree of freedom at the (bottom) lower-left corner of the
domain, which is triangulated such that the computational mesh is refined toward the origin.

To discretize the system, continuous linear Lagrange elements† from the FEniCS library27 were used. The resulting
linear system was solved by the preconditioned CG method implemented in the PETSc library,20 using hypreAMG21 to
compute the action of the preconditioner. More specifically, we used a single V cycle with one pre- and postsmoothing
by a symmetric successive over-relaxation smoother. The other AMG parameters were kept at their default settings,
for example, classical interpolation and Falgout coarsening.‡ The iterations were started from a random initial guess,
and a relative preconditioned residual magnitude of 10−11 was required for convergence.

The number of iterations together with error and convergence rates based on the H1 norm are reported in Table 1.
Pinpointing yields numerical solutions uh that converge at an optimal rate. Moreover, the number of iterations is
bounded. Unlike in the work of Bochev and Lehoucq,26 where specifying the solution datum in a single point was
found to lead to an increasing number of unpreconditioned CG iterations (both in 2D and 3D), here, we find that a
preconditioned CG with the system modified by pinpointing is a suitable numerical method for the singular Poisson
problem.

Following the performance of pinpointing in the singular Poisson problem, the same approach is now applied to (1) in
Example 2.

Example 2. We consider the singular elasticity problem (1) with 𝜇 = 384, 𝜆 = 577, and Ω obtained by rigid defor-
mation of the box

[
− 1

4
,

1
4

]
×
[
− 1

2
,

1
2

]
×
[
− 1

8
,

1
8

]
. The box was first rotated around the x-, y-, and z-axes by angles 𝜋

2
, 𝜋

4
,

†Unless stated otherwise, continuous linear Lagrange elements (P1) are used to discretize all the presented numerical examples.
‡The settings for AMG were reused throughout all the numerical experiments presented in this paper.
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FIGURE 1 Computational domain (blue) deformed by exaggerated (4×) analytical displacement used in the numerical examples. The
deformed body is colored by the magnitude of the displacement

TABLE 2 Convergence of the pinpointing approach for the singular elasticity problem

Size 3◦ 1⊳ 3⊳ 3•||u − uh||𝟏 # ||u − uh||𝟏 # ||u − uh||𝟏 # ||u − uh||𝟏 #

2187 6.69E− 02 (−0.02) 30 1.01E− 01 (−0.70) 32 2.82E− 02 (0.88) 24 2.89E− 02 (0.99) 25
14,739 1.27E− 01 (−0.92) 35 9.61E− 01 (−3.25) 40 1.08E− 02 (1.38) 28 1.35E− 02 (1.10) 29
107,811 2.57E− 01 (−1.02) 36 7.89E + 00 (−3.04) 48 1.72E− 02 (−0.66) 31 1.08E− 02 (0.31) 32
823,875 5.17E− 01 (−1.01) 41 6.36E + 01 (−3.01) 54 3.96E− 02 (−1.21) 33 1.82E− 02 (−0.75) 35

and 𝜋

5
, respectively. Afterward, it was translated by the vector (0.1, 0.2, 0.3). Starting from u∗ = 1

4
(sin 𝜋

4
x, z3,−𝑦), the

unique solution u of (1) is constructed by orthogonalizing u∗ with respect to the rigid motions of Ω, where the orthog-
onality is enforced in the L2 inner product, whereas the right-hand side f is manufactured by adding to −∇ · 𝜎(u) a
linear combination of rigid motions. Finally, we take 𝜎(u) ·n as the surface force h. The solution is pictured in Figure 1.
We note that, in this example, a uniform triangulation is used.

To obtain from (1) an invertible linear system, the exact displacement was prescribed in four different ways (cf.
Table 2). (3◦) constrains six degrees of freedom in three corners of the body such that in the ith corner, there are i
components prescribed. This choice is motivated by the dimensionality of the space of rigid motions (cf. the DNV
GL class guideline3). The fact that fixing three points in space is sufficient to prevent the body from rigid motions
motivates (1 ⊳), where all three components of displacement are prescribed on vertices of a single triangular ele-
ment on 𝜕Ω. However, with mesh size decreasing, this constraint effectively becomes a constraint for a single point.
Thus, in (3 ⊳), the displacement in three arbitrary triangles is fixed. Finally, in (3•), the displacement is prescribed in
three corners of the body.

The iterative solver used the same tolerances and parameters as in Example 1. In particular, identical settings of
the multigrid preconditioner were utilized, and the iterations were started from a random initial vector. We note that
AMG was not initialized with the rigid motions.

The number of iterations together with error and convergence rates based on the H1 norm are reported in Table 2.
Note that all the considered pinpointing strategies lead to moderately increased iteration counts. The increase is most
notable for (1 ⊳), which effectively constrains a single point as the mesh is refined. On the other hand, strategies (3 ⊳)
and (3•), which always constrain all three components of the displacement in at least three points, yield the slowest
growth rates. However, neither strategy yields convergent numerical solutions. In fact, the numerical error can often
be seen to increase with resolution.

In the final example, a preconditioned CG method will be applied to solve the singular elasticity problem with data
such that the compatibility conditions (2) are met.

Example 3. We consider a modified problem from Example 2, where f is not perturbed by rigid motions. As the data
satisfy (2), the discrete linear system is solvable and amenable to a solution by the preconditioned CG method. To this
end, the rigid motions are passed to the CG solver via the PETSc interface.§ The mass or identity matrix is added to
the singular system matrix in order to obtain a positive definite matrix in the construction of the preconditioner based
on AMG. The first choice can be viewed as a simple mean to get an invertible system, whereas the motivation for the

§See MatSetNullSpace (http://www.mcs.anl.gov/petsc/petsc-3.5/docs/manualpages/Mat/MatSetNullSpace.html).
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TABLE 3 Convergence of the preconditioned conjugate gradient method for the singular elasticity problem.
Positive definite preconditioners using the mass and identity matrices to get a nonsingular system are considered.
The maximum number of iterations is set to 150. The iterations are unbounded in both cases. Solutions due to a
preconditioner using the identity matrix converge at a nearly optimal rate

Size AMG(A + M) AMG(A + I)
Kernel not removed Kernel removed Kernel not removed Kernel removed||u−uh||𝟏 # ||u−uh||𝟏 # ||u−uh||𝟏 # ||u−uh||𝟏 #

2,187 1.97E− 02 (0.26) 17 5.08E− 03 (0.99) 17 1.11E− 02 (0.87) 21 5.08E− 03 (0.99) 21
14,739 2.58E− 02 (−0.39) 19 2.29E− 03 (1.15) 19 2.87E− 03 (1.95) 35 2.29E− 03 (1.15) 35
107,811 2.80E− 02 (−0.12) 34 1.06E− 03 (1.11) 34 1.21E− 03 (1.24) 81 1.06E− 03 (1.11) 81
823,875 2.82E− 02 (−0.01) 53 5.12E− 04 (1.04) 54 6.32E− 04 (0.94) >150 5.12E− 04 (1.04) >150

Note. AMG = algebraic multigrid.

latter is the functional setting to be discussed later in Theorem 1. Moreover, for each preconditioner, two cases are
considered where either the converged vector is postprocessed by removing from it the components of the null space
or no postprocessing is applied. We note that, in this example, the iterations are started from a zero initial vector, and
the relative tolerance of 10−10 is used as a convergence criterion. The number of iterations together with error and
convergence rates based on the H1 norm are reported in Table 3. We observe that the method with the mass matrix
(cf. with the left pane of the table) yields convergent solutions only if postprocessing is applied. On the other hand,
solutions with the preconditioner based on the identity matrix converge in the H1 norm even if no postprocessing is
used. The observation that the Krylov iterations/preconditioners respectively do and do not introduce rigid motions
(recall that the initial guess and the right-hand side are orthogonal to the kernel) is related to the properties of the
added matrices. A vector free of rigid motions remains orthogonal after applying to it the identity matrix. This property,
in general, does not hold for the (not diagonal) mass matrix.

Examples 1–3 have illustrated some of the issues that might be encountered when solving the singular problem (1)
with the FEM. In particular, the following questions may be posed: (a) What is the cause of the poor convergence prop-
erties of pinpointing? (b) What should be the order optimal preconditioner for CG? (c) What should be the order optimal
preconditioner for the Lagrange multiplier formulation?

With questions (b) and (c) answered in detail in the remainder of the text, let us briefly comment on the first question.
As will become apparent, the singular problem with a known kernel, such as (1), possesses all the information neces-
sary to formulate a well-posed problem and a convergent numerical method. In this sense, coming up with a datum to
be prescribed in the pinpointed nodes is theoretically redundant, but usually required for implementation. Further, as
pointed out in the work of Bochev and Lehoucq,26 there are stability issues with prescribing point values of H1 functions
for d ≥ 2. However, we have not explored the settings of HypreAMG or other realizations of the preconditioner that
could potentially improve the convergence properties of the method in Example 2. In this sense, the two-level precondi-
tioner of Vanek et al.28 is interesting as the proposed method results in bounded CG iterations even with the variationally
problematic point boundary conditions.

3 LAGRANGE MULTIPLIER FORMULATION

Let Z ⊂ V =
[
H1(Ω)

]3 denote the space of rigid motions of Ω. For compatible data, a unique solution u of (1) is required
to be linearly independent of functions in Z. To this end, a Lagrange multiplier p ∈ Z is introduced, which enforces the
orthogonality of u with respect to Z. The constrained variational formulation of (1) seeks u ∈ V, p ∈ Z such that¶

2𝜇(𝜖(u), 𝜖(v)) + 𝜆(∇ · u,∇ · v) − (p, v) = ( 𝑓, v) + (h, v)𝜕Ω ∀v ∈ V ,

−(u, q) = 0 ∀q ∈ Z.
(6)

¶Note that (h, v)𝜕Ω stands for the integral ∫
𝜕Ωh · vds.
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KUCHTA ET AL. 7 of 23

Equation (6) defines a saddle-point problem for (u, p) ∈ W, W = V × Z satisfying


(

u
p

)
=
(

A B
B′

)(
u
p

)
=
(

l
0

)
, (7)

where l ∈ V′ such that ⟨l, v⟩ = ( f, v) + (h, v)𝜕Ω and operators A ∶ V → V′, B ∶ Z → V′ are defined in terms of bilinear
forms

a(u, v) = 2𝜇(𝜖(u), 𝜖(v)) + 𝜆(∇ · u,∇ · v) and b(u, q) = (u, q) (8)

as ⟨Au, v⟩ = a(u, v) and ⟨Bq,u⟩ = −b(u, q). We note that, in (7), the operator B′ is the adjoint of B.
The existence and uniqueness of the solution to (7) follows from the Brezzi theory29 (see also Chapter 3.4 in the work

of Braess7). The proof shall utilize the inequalities given in Lemma 1.

Lemma 1. Let u ∈ V be arbitrary and 𝜔(u) be the skew-symmetric part of the displacement gradient ∇u, that is,
𝜔(u) = 1

2
((∇u) − (∇u)⊤). Then, we have

||𝜖(u)|| ≤ ||∇u|| and ||𝜔(u)|| ≤ ||∇u||, (9a)

||∇ · u|| ≤ √
3||∇u||, (9b)

∃C = C(Ω) such that ||z||1 ≤ C||z|| ∀z ∈ Z. (9c)

Proof. Inequality (9a) follows from the orthogonal decomposition∇u = 𝜖(u) + 𝜔(u). Inequality (9b) follows by direct
calculations. To establish the final inequality, we first note that (9c) clearly holds for rigid motions that are translations
with constant C = 1. To verify it for rigid rotations, we consider the representation z = Sx for some arbitrary
skew-symmetric matrix S ∈ ℝ3×3. Then, by definition, 𝜔(Sx) = S so that (𝜔(z), 𝜔(z)) = |S|2|Ω|, with |S| = √

tr(S⊤S)
as the Frobenius norm. In turn, we have

||z||2 = (Sx, Sx) = |S|2(x, x) = (x, x)|Ω| (𝜔(z), 𝜔(z)) = c(Ω)||∇z||2, c(Ω) = (x, x)|Ω| (10)

as 𝜖(z) = 0. Therefore, (9c) holds for all rotations. We remark that the constant c in (10) is related to the moment of
inertia of the body. Finally, the statement follows with a constant C(Ω) =

√
1 + c(Ω) from the decomposition of any

z ∈ Z into translations and rotations.

Theorem 1. Let f, h such that l ∈ V′. Then, there exists a unique solution u ∈ V, p ∈ Z of (7).

Proof. We proceed by establishing the Brezzi constants. First, the bilinear form a is shown to be bounded with respect
to || · ||1. Indeed, by the Cauchy–Schwarz inequality and inequalities (9a) and (9b), for any u, v ∈ V, we have

a(u, v) = 2𝜇(𝜖(u), 𝜖(v)) + 𝜆(∇ · u,∇ · v) ≤ 2𝜇||𝜖(u)||||𝜖(u)|| + 𝜆||∇ · u||||∇ · v||
≤ (2𝜇 + 3𝜆)||∇v||||∇u|| ≤ 𝛼∗||u||1||v||1

with 𝛼∗ = 2𝜆 + 3𝜇. The ellipticity of a on Z⟂ = {v ∈ V; (v, z) = 0∀z ∈ Z} = {v ∈ V; b(v, p) = 0∀p ∈ Z} follows
from Korn's inequality (5). Since 𝜆 ≥ 0 by assumption, we have

a(u,u) = 2𝜇||𝜖(u)||2 + 𝜆||∇ · u||2 ≥ 2𝜇||𝜖(u)||2 ≥ 𝛼∗||u||21 ∀u ∈ Z⟂,

with 𝛼∗ = 2𝜇C and C = C(Ω) as the constant from (5). The boundedness of b with a constant 𝛽∗ = 1 follows from
the Cauchy–Schwarz inequality. Finally, using (9c), for arbitrary p ∈ Z, we have

sup
v∈V

b(v, p)||v||1 ≥ (p, p)||p||1 ≥ ||p||2
C||p|| = 1

C
||p||

so that the inf-sup condition holds with 𝛽∗ = C−1, with C as the constant from (9c).

We remark that Theorem 1 implies that the operator  ∶ W → W ′ from (7) is an isomorphism. In particular, con-
ditions (2) need not hold for there to exist a unique solution of (6). In order to find the solution of the well-posed (7)
numerically, conditions from Theorem 1 must hold with discrete subspaces Vh and Zh (see the work of Fortin30 or
Chapter 3.4 in the work of Braess7). Typically, satisfying the discrete inf-sup condition presents an issue and requires the
choice of compatible finite element discretization of the involved spaces, for example, Taylor–Hood or MINI elements31

for the Stokes equations. For the conforming discretization Vh ⊂ V , Zh = Z, the following result shows that the discrete
inf-sup condition holds.
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8 of 23 KUCHTA ET AL.

Theorem 2. Let Zh = Z, Vh ⊂ V and b be the bilinear form defined in (8). Then, there is a constant 𝛽∗ independent of
h such that infp∈Zh supv∈Vh

b(v,p)||v||1||p|| ≥ 𝛽∗.

Proof. The proof mirrors the continuous inf-sup condition in Theorem 1. Let p ∈ Zh be given. Since Z = Zh ⊂ Vh,
by taking v = p, we get

sup
v∈Vh

b(v, p)||v||1 ≥ (p, p)||p||1 ≥ ||p||2
C||p|| = 1

C
||p||,

where C is the constant from (9c).

Following Theorems 1 and 2 and operator preconditioning,24,32 the Riesz map 1 ∶ W ′ → W with respect to the inner
product (u, v)1 + ( p, q) with (u, p), (v, q) ∈ W

1 =
(

H
I

)−1

, H ∶ V → V ′, ⟨Hu, v⟩ = (u, v)1 and I ∶ Z → Z′, ⟨Ip, q⟩ = (p, q) (11)

defines a preconditioner for discretized (7) whose condition number is independent of h. This follows from the Brezzi
constants in Theorems 1 and 2 being free of the discretization parameter.

Since applying the preconditioner (11) requires an inverse of the 6 × 6 mass matrix of the space rigid motions, it is
advantageous to choose a basis of Z in which the matrix is well conditioned. With the choice of an L2 orthonormal basis,
the obtained mass matrix is an identity, and we shall therefore briefly discuss the construction of such a basis.

3.1 Construction for orthonormal basis of rigid motions

Consider a unit cube Ω =
[
− 1

2
,

1
2

]3
centered at the origin. Denoting ei, i = 1, 2, 3, as the canonical unit vectors, the set

constitutes an orthonormal basis of the rigid motions of Ω with respect to the L2 inner product. Clearly, the basis for an
arbitrary body can be obtained from by a Gram–Schmidt process. However, we shall advocate here a construction
derived from physical considerations. The construction was originally presented by Kuchta et al.33

Lemma 2. Let c = |Ω|−1(x, 1) be the center of mass of Ω; IΩ be the tensor of inertia (see chapter 4 in the work of Gurtin34)
of Ω with respect to c, that is,

IΩ = ∫
Ω

I(x − c)⊤(x − c) + (x − c)⊗ (x − c)dx;

and (𝜆i, vi), i = 1, 2, 3, be the eigenpairs of the tensor. Then, the set

ZΩ =
{|Ω|− 1

2 v1, |Ω|− 1
2 v2, |Ω|− 1

2 v3, 𝜆
− 1

2
1 (x − c) × v1, 𝜆

− 1
2

2 (x − c) × v2, 𝜆
− 1

2
3 (x − c) × v3

}
(12)

is the L2 orthonormal basis of rigid motions of Ω.

Proof. Note that, by construction, IΩ is a symmetric positive definite tensor. Thus, 𝜆i > 0, and there exists a complete
set of eigenvectors vi

⊤v𝑗 = 𝛿i𝑗 . We proceed to show that the Gram matrix of the proposed basis is an identity. First,
(vi, v𝑗) = |Ω|𝛿i𝑗 by orthonormality of the eigenvectors. Further, for ((x − c) × vi, vj) = (vi × vj, (x − c)) and in the
nontrivial case i ≠ j, the product is zero since c is the center of mass. Finally, ((x− c)×vi, (x− c)×v𝑗) = vi

⊤IΩv𝑗 = 𝜆i𝛿i𝑗 .

We remark that the rigid motions of the body are in the constructed basis given in terms of translations along and
rotations around the principal axes of the tensor that describes its rotational kinetic energy.

Note also that the construction can be generalized to yield an orthonormal basis with respect to different inner products.
In particular, let Zh = span{zk}6

k=1 ⊂ Vh be functions approximating some basis of Z. For u, v ∈ Vh, let u = 𝜋hu and
v = 𝜋hv be coefficient vectors in the nodal basis of Vh. The l2 orthonormal basis of Zh can be created using Lemma 2
by replacing (u, v) with u⊤v. The differences between the bases are shown in Figure 2, where the defining principal axes
of the L2 and l2 orthonormal bases of rigid motions are drawn. If Ω is uniformly triangulated, the bases are practically
identical. However, the l2 basis changes in the presence of a nonuniform mesh refinement.
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KUCHTA ET AL. 9 of 23

FIGURE 2 Computational domains considered in the numerical examples for linear elasticity are obtained by uniformly refining the
parent mesh. (Left) Parent is close to uniformly triangulated. (Right) The parent mesh is refined near a single edge of the domain. The blue
and red arrows indicate the principal axes of the tensor IΩ (cf. Lemma 2), defined using the L2 and l2 inner products. Axes are drawn from the
center of mass computed using the respected inner products. Only the L2 basis is stable upon change of triangulation from uniform (left) to
nonuniform (right)

Formulation of problem (6) with respect to an L2 orthonormal basis {zk}6
k=1 of the space of rigid motions results in the

mapping between Z and ℝ6, being an isometry. In turn, if the discretized problem is considered with space Vh ×ℝ6 and its
natural norm, the Brezzi constants will be those obtained in Theorem 2. On the other hand, for a nonorthonormal basis
only, equivalence between the norms holds: There exists C1,C2 > 0 such that, for all p ∈ Z, we have

C1|c| ≤ ||p|| ≤ C2|c|, p =
6∑

k=1
ckzk,

and the constants C1 and C2 enter the estimates in the Brezzi theory. For an unfortunate choice of the basis, it is then
possible that C1 = C1(h) or C2 = C2(h), leading to the mesh-dependent performance of a preconditioner using the l2

norm for (the Lagrange multiplier space) ℝ6.
Returning to preconditioner (11), recall that the Brezzi constants 𝛼∗, 𝛼∗ depend on the Lamé constants, and thus, 1

does not define a parameter robust preconditioner. To address the dependence on material parameters, we shall, at first,
assume that 𝜇 and 𝜆 are comparable in magnitude. The case 𝜆 ≫ 𝜇 is postponed until Section 6.

3.2 Robust preconditioning of the singular problem
Parameter robust preconditioners for the Lagrange multiplier formulation of the singular elasticity problem (6) can be
analyzed by the operator preconditioning framework of Mardal and Winther.24 The preconditioners are constructed by
considering (7) in parameter-dependent spaces (see, e.g., the work of Bergh and Löfström35), which are equivalent with
V as a set, but the topology of the spaces is given by different parameter-dependent norms. Two such norms, leading to
two different preconditioners, are constructed next.

For u ∈ V, consider the orthogonal decomposition u = uZ +uZ⟂ , where uz ∈ Z and uz⟂ ∈ Z⟂. Bilinear forms (·, ·)E and
(·, ·)M over V are defined in terms of A from (7) and operators Y ∶ V → V′ and M ∶ V → V′ as⟨Yu, v⟩ = (uZ, vZ), (u, v)E = ⟨Au, v⟩ + ⟨Yu, v⟩,⟨Mu, v⟩ = (u, v), (u, v)M = ⟨Au, v⟩ + ⟨Mu, v⟩. (13)

The forms (13) define functionals || · ||E and || · ||M over V such that

||u||E =
√
(u,u)E and ||u||M =

√
(u,u)M . (14)

Lemma 3. Let || · ||E and || · ||M be the functionals (14). Then, || · ||E and || · ||M define norms on V, which are equivalent
with the H1 norm.

Proof. From the orthogonal decomposition of u ∈ V, it follows that ||u||2M = ||u||2E + ||uZ⟂ ||2. Together with Lemma 1,
we thus establish ||u||2E ≤ ||u||2M ≤ (2𝜇 + 3𝜆 + 1)||u||21 ∀u ∈ V .
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10 of 23 KUCHTA ET AL.

To complete the equivalence, let C = C(Ω) be the constant from Korn's inequality (4). Then, for all u ∈ V, we have

||u||2M ≥ 2𝜇||𝜖(u)||2 + ||u||2 ≥ c||u||21,
with c = C for 2𝜇 > 1 and c = 2𝜇C otherwise. Finally, for the equivalence of the E-norm, Korn's inequality on Z⟂

(see (5) and Theorem 1) yields

||u||2E = 2𝜇||𝜖(u)||2 + 𝜆||∇ · u||2 ≥ 2𝜇C||u||21 ∀u ∈ Z⟂

with C = C(Ω), whereas using (9c) in Lemma 1 gives

||u||E = ||u|| ≥ C1(Ω)||u||1
for any u ∈ Z. Thus, E and H1 norms are equivalent on Z⟂ and Z, respectively. The proof is completed by observing
that uZ and uZ⟂ satisfy (uZ,uZ⟂)E = 0 so that

||u||2E = 2𝜇||𝜖(uZ⟂ )||2 + 𝜆||∇ · uZ⟂ ||2 + ||uZ||2 ≥ 2𝜇C||uZ⟂ ||21 + C1||uZ||21 ≥ c
(||uZ⟂ ||21 + ||uZ||21) ,

c = min(2𝜇C,C1), whereas for the H1 inner product, ||u||21 ≤ 2(||uZ⟂ ||21 + ||uZ||21) holds. Thus, ||u||2E ≥ c
2
||u||21 for

all u ∈ V.

Using equivalent norms of V from Lemma 3, we readily establish equivalent norms for the product space W = V × Z,
that is, ||w||E = ||(u, p)||E =

√||u||2E + ||p||2 and ||w||M = ||(u, p)||M =
√||u||2M + ||p||2, (15)

and consider as preconditioners for (7) the operators E ∶ W ′ → W and M ∶ W ′ → W , that is,

E =
(

A + Y
I

)−1

and M =
(

A + M
I

)−1

. (16)

Note that the mappings (16) are the Riesz maps with respect to the inner products that induce norms (15). We proceed
with the analysis of the properties of E.

Theorem 3. Let  ∶ W → W ′ be the operator and the space from (7) and WE be the space W considered with the|| · ||E norm (15). Then,  ∶ WE → W ′
E is an isomorphism. Moreover, the Riesz map E ∶ W ′

E → WE in (16) defines the
canonical preconditioner for (7).

Proof. We shall show that the first assertion holds by establishing the Brezzi constants. Recall the definition of the
bilinear form a given in (8). Then, by the Cauchy–Schwarz inequality and (9a) in Lemma 1, the inequality a(u, v) ≤√

a(u,u)
√

a(v, v) holds for any u, v ∈ V. In turn, for all u, v ∈ V, we have

a(u, v) ≤ √
a(u,u)

√
a(v, v) ≤ √

a(u,u) + (uZ,uZ)
√

a(v, v) + (vZ, vZ) = ||u||E||v||E,
and a is bounded with respect to the E norm with a constant 𝛼∗ = 1. Further, uZ = 0 for u ∈ Z⟂. Hence, a(u,u) =
a(u,u) + (uZ,uZ) = ||u||2E for all u ∈ Z⟂, and the form is E elliptic on Z⟂ with constant 𝛼∗ = 1. To compute the
boundedness constant of the form b, the orthogonal decomposition u = uZ +uZ⟂ is used so that, for all u ∈ V, q ∈ Z,
we have

b(u, q) = (uZ + uZ⟂ , q) = (uZ, q) ≤ ||uZ||||q|| = √
a(u,u) + ||uZ||2||q|| = ||u||E||q||,

and we have 𝛽∗ = 1. Finally, taking any q ∈ Z and setting u = q in

sup
u∈V

b(u, q)||u||E ≥ (q, q)√
a(q, q) + (qZ, qZ)

=
||q||2√

0 + ||q||2 ≥ ||q||,
the inf-sup condition holds with 𝛽∗ = 1. As all the constants are independent of material parameters, the second
assertion follows from the first one by operator preconditioning (see chapter 5 in the work of Mardal and Winther24).

Using Theorem 3, it is readily established that the condition number of the composed operator E ∶ W → W is equal
to 1. We further note that discretizing operator E leads to discrete null space preconditioners as in chapter 6 in the work
of Benzi et al.36

While the spectral properties of E are appealing, the preconditioner is impractical. Consider BE as a matrix rep-
resentation of the Galerkin approximation of E in Wh ⊂ W . Then, BE = diag(A + YY⊤, I)−1, where Y = ℝn×6,

 10991506, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2212 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [15/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KUCHTA ET AL. 11 of 23

yk = colkY = 𝜋hzk, and zk ∈ Vh is the function from the L2 orthogonal basis of the space of rigid motions. Due to the
second (nonlocal) term, the matrix A + YY⊤ is dense. Further, as shall be discussed in Section 4, inverting the operator
requires computing (the action of) the pseudoinverse of the singular matrix A. The mapping M , on the other hand, leads
to a more practical preconditioner.

Theorem 4. Let  ∶ W → W ′ be the operator and space defined in (7) and WM be defined analogically to Theorem 3.
Then,  ∶ WM → W ′

M is an isomorphism. Moreover, the Riesz map M ∶ W ′
M → WM in (16) defines a parameter robust

preconditioner for (7).

Proof. As in the proof of Theorem 3, we establish that a(u, v) ≤ ||u||M||v||E for all u, v ∈ V and b(v, p) ≤ ||v||||p|| ≤||v||M||p|| for all v ∈ V, p ∈ Z. Setting v = p ∈ Z then yields inf p∈Z sup v∈V
b(v,p)||v||M ||p|| ≥ 1. For M ellipticity of a on Z⟂,

assume the existence of C = C(Ω) such that ||u||2 ≤ C||𝜖(u)||2 for all u ∈ Z⟂. Then, on Z⟂, we have

||u||2 ≤ C||𝜖(u)||2 ≤ C𝜇||𝜖(u)||2 ≤ C
(
2𝜇||𝜖(u)||2 + 𝜆||∇ · u||2) = C||u||2E

and ||u||2M = ||u||2E + ||u||2 ≤ (C + 1)||u||2E
so that a(u,u) = ||u||2E ≥ (1 + C)−1||u||2M . Finally, we comment on the assumption of the existence of constant C.
Assume the contrary. Then, there is u ∈ Z⟂ such that ||e(u)|| = 1, ||w(u)|| = 0 and the ||u|| unbounded. However,
such u violates Korn's inequality (5).

We remark that Theorem 4 required an additional assumption 2𝜇 ≥ 1. The assumption is not restrictive as it can be
always achieved by scaling the equations such that the inequality is satisfied. Note also that with the orthonormal basis
of rigid motions, the discrete preconditioner based on M is such that BM

−1 = diag(A+M, I), with M as the mass matrix.
The system to be assembled is therefore sparse.

Following Theorem 4, the condition number of the preconditioned operatorM ∶ W → W depends solely on constant
C from Korn's inequality (5). An approximation for the constant is provided by the smallest positive eigenvalue 𝜆+min of
the problem (

A B
B⊤

)(
u
p

)
= 𝜆

(
A + M

I

)(
u
p

)
.

In Table A1 of the Appendix, the constant has been computed for two different domains: a cube from Example 2 and a
hollow cylinder. In both cases, C ≈ 1 can be observed.

In order to demonstrate h robust properties of M , the problem from Example 2 is considered with the basis from
Section 3.1 and discretized on Vh ⊂ V . The resulting preconditioned linear system is solved by the minimal residual
(MinRes) method37 as implemented in cbc.block, the FEniCS library for block matrices38 using as the preconditioner

BM =
(

AMG(A + M)
I

)
.

More specifically, the preconditioner uses a single AMG V cycle with one pre- and postsmoothing by a symmetric succes-
sive over-relaxation smoother. The rigid motions were not passed to the routine on initialization. The saddle-point system
was assembled and inverted# using cbc.block. The results of the experiment are presented in Table 5. Clearly, the num-
ber of iterations required for convergence is independent of the discretization. Moreover, the method yields numerical
solutions that converge in the H1 norm at the optimal rate‖ on both the uniform and nonuniform meshes (cf. Figure 2).

A drawback of the Lagrange multiplier formulation is the cost of solving the resulting indefinite linear system. Fol-
lowing, for example, chapter 7.2 in the work of Greenbaum,39 let the condition number of a Hermitian matrix A be
𝜅(A) = 𝜆max(A)∕𝜆min(A), where 𝜆max(A) and 𝜆min(A) are the largest and smallest (in magnitude) eigenvalues of the matrix,
respectively. For A as Hermitian indefinite and under simplifying assumptions on the spectrum, chapter 3.2 in the work
of Liesen and Tichý40 gives the following bound on the relative error in residual rn at step n of the MinRes method, that is,

|rn||r0| ≤ 2
(
𝜅(A) − 1
𝜅(A) + 1

)n∕2

.

# The implementation of the solver as well as the two algorithms discussed in Sections 5 and 6 can be found online at https://github.com/MiroK/fenics-
rigid-motions.
‖We recall that Vh is constructed from continuous linear Lagrange elements.
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The result should be contrasted with a similar one for the error en at the nth step of the CG method on symmetric positive
definite matrix A (see, e.g., Theorem 38.5 in the work of Trefethen and Bau41), that is,

en
⊤Aen

e0⊤Ae0
≤ 2

(√
𝜅(A) − 1√
𝜅(A) + 1

)n

.

While the above estimates are known to give the worst case behavior of the two methods, the faster rate of convergence
of the CG motivates investigating formulations of (1) to which the CG method can be applied.

4 CG METHOD FOR DISCRETE SINGULAR PROBLEMS

We consider a variational formulation of (1): Find u ∈ V =
[
H1(Ω)

]3 such that

2𝜇(𝜀(u), 𝜀(v)) + 𝜆(∇ · u,∇ · v) = (𝑓, v) + (h, v)𝜕Ω ∀v ∈ V . (17)

Denoting a ∶ V × V → ℝ, l ∶ V ′ → ℝ as the bilinear and linear forms defined by (17), we note that the problem is not
well-posed in V. Indeed, the compatibility conditions (2) restrict the functionals for which the solution can be found to be
l ∈ Z0 =

{
𝑓 ∈ V ′; ⟨𝑓, z⟩ = 0∀z ∈ Z

}
. Moreover, only the part of u in Z⟂ is uniquely determined by (17). More precisely,

we have the following result.

Theorem 5. Let l ∈ Z0. Then, there exists a unique solution of the problem:

Find u ∈ Z⟂ such that for any v ∈ Z⟂, it holds that a(u, v) = ⟨l, v⟩. (18)

Proof. The complete proof can be found as Theorem 11.2.30 in the work of Brenner and Scott.42 Note that the
boundedness and ellipticity of a on Z⟂ with || · ||1 are proven as part of Theorem 1.

We remark that if (2) holds, then u ∈ Z⟂ solves (18) if and only if (u, 0) solves the Lagrange multiplier problem (7).
Further, the well-posed variational problem (18) is not suitable for discretization by the FEM as the approximation leads
to a dense linear system. A sparse discrete problem to which the CG method shall be applied is therefore derived from (17).

Recall dim Z = 6, n = dim Vh, and let Vh = span{𝜙i}n
i=1. Discretizing the variational problem (17) leads to a linear

system
Au = b, (19)

where A ∈ ℝn×n such that Ai j = a(𝜙j, 𝜙i) and vector b ∈ ℝn, bi = ⟨l, 𝜙i⟩. Note that we shall consider (19) for a general
right-hand side, that is, not necessarily a discretization of l ∈ Z0. We proceed by reviewing the properties of the discrete
system.

Due to the symmetry and ellipticity of the bilinear form a on Z⟂, there exists, respectively, six vectors zk and n − 6
eigenpairs (𝛾 i,ui), 𝛾 i > 0 such that Azk = 0, zk

⊤ui = 0, Aui = 𝛾 iui, and ui
⊤u𝑗 = 𝛿i𝑗 . From the decomposition

of A, it follows that system (19) is solvable if and only if zk
⊤b = 0 for any k, and the unique solution of the system

is u ∈ span{ui}n−6
i=1 . We note that the last statement is the Fredholm alternative for (19). As a further consequence of

the decomposition, it is readily verified that given compatible vector b, the solution of (19) is u = BAb with BA such
that BAy =

∑
i𝛾i

−1 (ui
⊤y

)
ui. The matrix BA is the pseudoinverse43 or natural inverse (see chapter 3 in the work of

Lanczos44) of A.
We note that any vector from ℝn can be orthogonalized with respect to the kernel of A by a projector PZ = I − ZZ⊤,

where Z ∈ ℝn×6 is the matrix consisting of l2 orthonormal basis vectors of the kernel.
With b such that Z⊤b = 0, the solution u of linear system (19) can be computed by the CG method.45 Let u0 be

the starting vector for the iterations. Then, assuming exact arithmetic and no preconditioner, the method preserves the
component of u0 in Z, that is, Z⊤u0 = Z⊤u. In particular, Z⊤u0 = 0 is required to obtain a solution orthogonal to the
kernel. On the other hand, let B be the CG preconditioner. Then, the iterations introduce components of the kernel to the
solution even if Z⊤u0 = 0, unless the range of B is orthogonal to Z.

4.1 Preconditioned CG for the singular elasticity problem
A suitable preconditioner for (19) is obtained by a composition with the PZ projector, and we shall consider BM =
PZ(A + M)−1, where M is the mass matrix. That the preconditioner leads to a bounded iteration count (and converging
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KUCHTA ET AL. 13 of 23

TABLE 4 Preconditioned conjugate gradient iterations on (19) obtained by the
discretization of (17) with problem parameters as in Example 2 and two preconditioners.
Both systems are solved with relative tolerance of 10−10. A uniform mesh is used

Size PzAMG(A + M) AMG(A|Z)||u−uh||𝟏 # Time [s] ||u−uh||𝟏 # Time [s]

14,739 1.14E− 02 (1.09) 22 0.491 1.14E− 02 (1.09) 21 0.537
107,811 5.49E− 03 (1.06) 23 10.17 5.49E− 03 (1.06) 23 10.96
823,875 2.71E− 03 (1.02) 24 103.5 2.71E− 03 (1.02) 25 86.51
6,440,067 1.35E− 03 (1.00) 26 1,580 1.35E− 03 (1.00) 26 911.9

Note. AMG = algebraic multigrid.

TABLE 5 Convergence properties of (top) the Lagrange multiplier formulation (7) and (bottom) the
singular formulation (17) utilizing the l2 orthogonal basis of the null space to invert system (19). Only the
multiplier formulation yields solutions converging on uniform and nonuniform meshes. Relative tolerances
of 10−11 and 10−10 are used for the minimal residual and conjugate gradient methods, respectively

Uniform Refined
Size ||u−uh||𝟏 # maxZ|(uh , z)| Size ||u−uh||𝟏 # maxZ|(uh , z)|
14,745 1.03E− 02 (1.14) 44 3.54E− 07 13,080 3.11E− 02 (0.99) 50 1.68E− 07
107,817 4.84E− 03 (1.09) 45 2.77E− 06 98,052 1.41E− 02 (1.14) 53 6.73E− 08
823,881 2.36E− 03 (1.03) 45 1.38E− 06 759,546 6.53E− 03 (1.11) 54 8.11E− 07
6,440,073 1.18E− 03 (1.00) 44 1.75E− 05 5,978,835 3.20E− 03 (1.03) 55 2.94E− 06
14,739 1.14E− 02 (1.09) 21 1.30E− 03 13,074 5.51E− 02 (0.45) 26 6.06E− 03
107,811 5.49E− 03 (1.06) 23 6.66E− 04 98,046 5.05E− 02 (0.12) 27 6.32E− 03
823,875 2.71E− 03 (1.02) 25 3.36E− 04 759,540 5.00E− 02 (0.02) 29 6.43E− 03
6,440,067 1.35E− 03 (1.00) 26 1.69E− 04 5,978,829 4.98E− 02 (0.01) 31 6.49E− 03

numerical solutions) is demonstrated in Table 4 (cf. left pane). The preconditioner is also compared with a different
preconditioner based on the approximation of the pseudoinverse BA. The approximation can be constructed by pass-
ing a kernel of the operator to the CG routine, in the form of the l2 orthonormal basis vectors (see MatSetNullSpace in
PETSc20). Note that the preconditioners perform similarly in terms of the iteration count; however, for large systems, the
pseudoinverse appears to be a faster method.

We remark that in terms of operator preconditioning, the preconditioner based on the pseudoinverse can be interpreted
as a Riesz map Z0 → Z⟂ defined with respect to the inner product induced by the bilinear form a. Recall that a is symmetric
and elliptic on Z⟂. On the other hand, BM approximates a mapping Z0 → V → Z⟂.

Having established preconditioners for the indefinite system stemming from the Lagrange multiplier formulation (7)
and the positive semidefinite problem stemming from (17), we shall finally discuss the approximation properties of the
computed solutions. To this end, the problem from Example 2 is considered, where f is perturbed by rigid motions. Note
that while with the new functional l, problem (7) is well-posed, in (19), a compatible right-hand side b will be obtained
by projector PZ.

The results of the experiment are listed in Table 5. The Lagrange multiplier method converges at an optimal rate on
both uniformly and nonuniformly discretized meshes (cf. Figure 2). On the other hand, solutions to (19) converge to the
true solution only on the uniform mesh, whereas there is no convergence with nonuniform discretization. Note that this
is not signaled by the growth of the iterations: For both methods, the iteration counts are bounded. Note also that MinRes
takes about twice as many iterations as CG.

From the experiment, we conclude that the CG method for (19), as applied so far, generally does not yield converging
numerical solutions of (17). It is next shown that the issue is due to projector PZ = I − ZZ⊤, which the method uses and
which is derived from the discrete problem. In particular, we show that PZ is not a correct discretization of a projector used
in the continuous problem (18) (and (7)). Following the continuous problem, a modification to CG is proposed, which
leads to a converging method.
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14 of 23 KUCHTA ET AL.

4.2 CG method with Z0, Z⟂ projectors
Consider the variational problem (18), which was proven well-posed in Theorem 5 under the assumptions l ∈ Z0 ⊂ V ′ and
u ∈ Z⟂ ⊂ V . In this respect, there are two subspaces associated with (18), and we shall define two projectors P ∶ V → Z⟂

and P′ ∶ V′ → Z0 such that, for u ∈ V, f ∈ V′, we have

(Pu, v) = (uZ⟂ , v) ∀v ∈ V ,⟨P′𝑓,u⟩ = ⟨𝑓,u − uz⟩. (20)

Similar projectors were discussed in the work of Bochev and Lehoucq26 for the singular Poisson problem. We note that⟨ f,Pu⟩ = ⟨P′f,u⟩, and thus, P′ is the adjoint of P.

Lemma 4. Let l ∈ V′ and P,P′ be the projectors (20). Then, (u, p) ∈ V × Z solves (7) with the right-hand side (v, q) →⟨l, v⟩ + ⟨0, q⟩ if and only if u ∈ Z⟂ and u solves (18) with the right-hand side P′l.

Proof. It suffices to establish the relation between the right-hand sides. Testing (7) with (z, 0), z ∈ Z yields that
(p, z) = ⟨l, z⟩. In turn, for any v ∈ V, we have

⟨l, v⟩ − (p, v) = ⟨l, v⟩ − (p, vZ + vZ⟂) = ⟨l, v⟩ − ⟨l, vZ⟩ = ⟨l, v − vZ⟩ = ⟨l,Pv⟩,
and the new right-hand side of (7) is therefore (v, q) → ⟨P′l, v⟩ + ⟨0, q⟩.
To derive a matrix representation of the projectors with respect to nodal basis Vh = span{𝜙i}n

i=1, the mappings 𝜋h ∶
Vh → ℝn (the nodal interpolant) and 𝜇h ∶ V ′

h → ℝn from (3) are used. We recall that (u, v) = v⊤Mu for u = 𝜋hu,
v = 𝜋hv and M, Mi j = (𝜙j, 𝜙i) as the mass matrix, whereas ⟨ f, v⟩ = f⊤v with f = 𝜇h f. Finally, matrix Y = ℝn×6 is such
that yk = colkY = 𝜋hzk, where zk ∈ Vh belongs to the L2 orthogonal basis of the space of rigid motions. Then, we have

v⊤MPu = (Pu, v) = (u, v) −
6∑

k=1
(u, zk)(v, zk) = V⊤M

(
I − YY⊤M

)
u,

f⊤P′⊤v = ⟨𝑓,Pv⟩ = ⟨𝑓, v⟩ − 6∑
k=1

⟨𝑓, zk⟩(v, zk) = f⊤
(
I − YY⊤M

)
v,

(21)

and P =
(
I − YY⊤M

)
is the representation of P, whereas P′ is represented by P⊤. We remark that, in addition to Y, the

rigid motions Zh = span{zk}6
k=1 can be represented in ℝn by an additional matrix W = MY, which is 𝜇h applied to

functionals v → (zk, v). Following the work of Mardal and Winther,24 matrices Y and W are respectively termed the primal
and dual representations of Zh. Observe that in (21), matrix P uses the primal representation for u, whereas the vector is
expanded in the dual representation by P′ . Moreover, the L2 orthogonality of Zh yields yi

⊤w𝑗 = 𝛿i𝑗 . Finally, note that the
projectors P⊤ and P are implicitly present in the linear system, which is the discretization of the multiplier problem (7)
with the orthogonal basis of rigid motions, that is,(

A W
W⊤

)(
u
p

)
=
(

b
0

)
. (22)

Indeed, p = Y⊤b from premultiplying the first equation by Y⊤. Upon substitution, the equation reads Au = b−WY⊤b =
P⊤b. Further, the solution is such that Pu = 0.

The situation where the continuous problems (7) and (18) and the discrete problem (22) use different projectors for the
left- and right-hand sides contrasts with (19), which utilizes PZ to obtain a consistent right-hand side, and the solution is
such that PZu = 0 as well. This observation together with the lack of convergence of the CG method (cf. Table 5) motivate
that the CG method on (19) is used with the following two modifications: (a) the iterations are started from vector P⊤b
and (b) P is applied to the final solution.

The effect of the proposed modifications is shown in Table 6. The problem from Example 2 is considered on a nonuni-
form mesh, and the CG on (19) is applied with different combinations of projectors used to obtain the right-hand side
from incompatible vector b and to orthogonalize the converged solution. We observe that only the case (P⊤,P)** yields
optimal convergence. With (PZ,P), the rate is slightly smaller than 1. In the remaining two cases, the solutions do not
converge, suggesting that, for convergence, P must be applied to the solution.

**Elements of the tuple denote the projector for the right-hand side and the left-hand side, respectively.
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KUCHTA ET AL. 15 of 23

TABLE 6 Convergence of the conjugate gradient solutions for (19) with different combinations of
the right-hand (horizontal) side and left-hand side (vertical) projectors. The problem from Example 2
is considered. Preprocessing the right-hand side and postprocessing the solution by projectors (P⊤,P)
yield solutions converging at an optimal rate

Size PZ P⊤||u − uh||1 # maxZ|(uh, z)| ||u − uh||1 # maxZ|(uh, z)|
PZ 13,074 5.51E− 02 (0.45) 26 6.06E− 03 5.53E− 02 (0.44) 27 6.05E− 03

98,046 5.05E− 02 (0.12) 27 6.32E− 03 5.11E− 02 (0.12) 28 6.31E− 03
759,540 5.00E− 02 (0.02) 29 6.43E− 03 5.06E− 02 (0.01) 29 6.42E− 03
5,978,829 4.98E− 02 (0.01) 31 6.49E− 03 5.05E− 02 (0.00) 31 6.48E− 03

P 13,074 3.13E− 02 (0.98) 27 6.84E− 16 3.11E− 02 (0.99) 25 6.15E− 16
98,046 1.45E− 02 (1.11) 28 2.94E− 14 1.41E− 02 (1.14) 27 2.92E− 14
759,540 6.92E− 03 (1.07) 29 6.39E− 14 6.53E− 03 (1.11) 29 6.40E− 14
5,978,829 3.63E− 03 (0.93) 31 2.89E− 13 3.20E− 03 (1.03) 31 2.86E− 13

The results shown in Table 6 are satisfactory in a sense that preprocessing the right-hand side with P⊤ and postprocess-
ing the solution with P improved the convergence properties of the CG method for (19). However, the modifications alter
the original discrete problem, and thus, the properties of the new problem should be discussed. We note that in the dis-
cussion, Z and Y are respectively the I and M orthogonal bases of the null space of A. Further, the transformation matrix
between the bases is c ∈ ℝ6×6 such that Z = Yc, and we have Y⊤MZ = c.

First, the admissibility of the modified right-hand side P⊤b is considered. Using the transformation matrix, it holds
that Z⊤P⊤b = 0, and thus, P⊤b is compatible, and the solution can be obtained by a pseudoinverse (or equivalently
by CG). The computed solution of the new linear system then satisfies Z⊤u = 0. However, the continuous problem
requires orthogonality Y⊤Mu = Ch. As the two conditions are related through |Y⊤Mu|2 = u⊤MZ(c⊤c)−1Z⊤Mu =
u⊤MZ(Z⊤MZ)−1Z⊤Mu and Z⊤Z = I, the orthogonality in the L2 inner product depends on the similarity of the mass
matrix with identity. This is essentially a condition on the mesh, and |Y⊤MZ| ≥ C is possible (as observed in Table 6).

To enforce the orthogonality constraint Y⊤Mu = 0 without postprocessing, we shall finally consider the linear system
Au = P⊤b and require Pu = 0 for uniqueness. In this case, the solution is not provided by pseudoinverse BA. However,
a similar construction based on the generalized eigenvalue problem can be used instead.

Lemma 5. Let u be a unique solution of Au = P⊤b, satisfying Pu = 0 and Γ ∈ ℝn×n, U ∈ ℝn×n−6 such that AU =
MU𝛤 , U⊤MU = I. Then, u = BP⊤b, where B = U𝛤 −1U⊤.

Proof. First, note that the existence of matrices U and 𝚪 follows from the positive semidefiniteness of A. Further, by
M, the orthogonality of the eigenvectors MUx = P⊤b holds with x = U⊤b. As Y⊤MU = 0, any vector Bb is M
orthogonal with Y, and thus, PBb = 0. It remains to show that the composition AB is the identity on the subspace
spanned by columns of MU. Indeed,

ABMU = AUΓ−1U⊤MU = AUΓ−1 = MUΓΓ−1 = MU.

5 NATURAL NORM FORMULATION

An attractive feature of the variational problem (17) is the fact that the resulting linear system is amenable to a solution by
the CG method, which, when modified following Section 4, yields converging solutions. However, the projectors P′ and
P are only applied as a pre- and postprocessor, and the CG loop is, in this respect, detached from the continuous problem.
Moreover, the method requires a special preconditioner that handles the null space of matrix A. A formulation that leads
to a positive definite linear system requiring only a regular (not null space aware) preconditioner shall be studied next.

Theorem 6. Let a ∶ V × V → ℝ, a(u, v) = 2𝜇(𝜖(u), 𝜖(v)) + 𝜆(∇ · u,∇ · v), and let l ∈ Z0. There exists a unique u ∈ V
satisfying

a(u, v) + (uZ, vZ) = ⟨l, v⟩ ∀v ∈ V . (23)

Moreover, u ∈ Z⟂.
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16 of 23 KUCHTA ET AL.

TABLE 7 Convergence study of the natural norm formulation (23) for the singular elasticity problem
from Example 2. The system is solved with relative tolerance 10−11. The conjugate gradient method uses
preconditioner AMG(A + M). Iteration counts are bounded in the uniform case, whereas a slight growth
can be seen in the refined one. The solutions converge at an optimal rate

Uniform Refined
Size ||u−uh||𝟏 # maxZ|(uh , z)| Size ||u−uh||𝟏 # maxZ|(uh , z)|
14,739 1.03E− 02 (1.14) 33 2.57E− 08 13,074 3.11E− 02 (0.99) 39 3.70E− 08
107,811 4.84E− 03 (1.09) 29 1.80E− 05 98,046 1.41E− 02 (1.14) 41 3.46E− 08
823,875 2.36E− 03 (1.03) 37 9.23E− 09 759,540 6.53E− 03 (1.11) 43 8.90E− 08
6,440,067 1.18E− 03 (1.00) 33 2.38E− 05 5,978,829 3.20E− 03 (1.03) 46 3.53E− 08

Proof. Recall that the bilinear form above is the inner product (u, v)E from (13), which induces an equivalent norm
on V (cf. Lemma 3). The existence and uniqueness of the solution now follows from the Lax–Milgram lemma. Testing
the equation with v = z ∈ Z yields (u, z) = 0, and in turn, u ∈ Z⟂.

We remark that the solutions of (23) and (18) are equivalent because l ∈ Z0. Note also that Theorem 4 gives equivalence
bounds (1 + C)−1||u||2M ≤ ||u||2E ≤ ||u||2M for all u ∈ V and C = C(Ω). In turn, the Riesz map with respect to the
inner product (u, v)M = a(u, v) + (u, v) defines a suitable h robust preconditioner for (23). Finally, observe that the L2

orthogonality of decomposition u = uZ + uZ⟂ is respected by the inner product (·, ·)E (see (13)). The norm ||u||E (see (14))
thus considers Z and Z⟂ with the L2 norm and the a induced norm, which are the natural norms for the spaces.

Using (21), the natural norm formulation (23) leads to a positive definite linear system

[A + MY (MY)]u = P⊤b,

where we recognize a dense matrix from the discretization of the E preconditioner of the Lagrange multiplier formula-
tion (cf. Theorem 3). Therein, the inverse of the matrix was of interest. However, relevant for the CG method here is only
the matrix vector product, which can be computed efficiently by storing separately A and MY, the dual representation of
rigid motions in Vh.

With (23), we finally revisit the test problem from Example 2. Results of the method are summarized in Table 7. An
optimal convergence rate is observed with both uniform and nonuniform meshes. In the uniform case, the CG iteration
count with the proposed Riesz map preconditioner approximated by AMG(A + M) remains bounded. There is a slight
growth in the refined case. An interesting observation is the fact that the error in the orthogonality constraint is smaller
in comparison to the Lagrange multiplier formulation (cf. Table 5).

6 NEARLY INCOMPRESSIBLE MATERIALS

So far, we have assumed that 𝜇 and 𝜆 are comparable in magnitude. In this section, we handle the case where 𝜆 ≫ 𝜇

and the material is nearly incompressible. The variational problems (6), (17), and (23) studied thus far were based on
the pure displacement formulation of linear elasticity (1), and H1 conforming finite element spaces were used for their
discretization. Due to the locking phenomenon, the approximation properties of their respected solutions are known to
degrade for nearly incompressible materials with 𝜆 ≫ 𝜇 (equivalently, a Poisson ratio close to 1/2; see, e.g., chapter 6.3
in the work of Braess7). Moreover, the incompressible limit presents a difficulty for the convergence of iterative methods
in the standard form.

Methods robust with respect to increasing 𝜆 can be formulated using a discretization with nonconforming elements
(see chapter 11.4 in the work of Brenner and Scott42). However, this method fails to satisfy Korn's inequality. To the
authors' knowledge, the only primal conforming FEM that is both robust in 𝜆 and satisfies Korn's inequality is that in
the works of Mardal et al.46,47 In addition to problems with the discretization, standard multigrid algorithms do not
work well for large 𝜆, and special-purpose algorithms must be used.48 Related discontinuous Galerkin formulation based
on H(div)-conforming elements is described in the work of Hong et al.,49 where an H(div) multigrid method is also
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KUCHTA ET AL. 17 of 23

introduced. For this reason, we resort to a more straightforward solution of the mixed formulation where an additional
variable, the solid pressure p, is introduced. Let the solid pressure be defined as p = 𝜆∇ · u so that (6) is reformulated as

∇ · (2𝜇𝜖(u)) − ∇p = 𝑓 in Ω,
𝜆∇ · u − p = 0 in Ω,
𝜎(u) · n = h on 𝜕Ω.

(24)

Note that the problem is singular, since any pair z ∈ Z, p = 0 can be added to the solution. In fact, such pairs constitute
the kernel of (24). To obtain a unique solution, we shall, as in Section 3, require that u is orthogonal to the rigid motions Z.

Setting Q = L2(Ω), we shall consider a variational problem for the triplet u ∈ V, p ∈ Q, 𝜈 ∈ Z such that

2𝜇(𝜖(u), 𝜖(v)) + (p,∇ · v) + (𝜈, v) = ⟨l, v⟩ ∀v ∈ V ,

(q,∇ · u) − 𝜆−1(p, q) = 0 ∀q ∈ Q,

(𝜂,u) = 0 ∀𝜂 ∈ Z.
(25)

Equation (25) defines a double–saddle-point problem


( u

p
𝜈

)
=

( A B D
B′ −𝜆−1C
D′

)( u
p
𝜈

)
=

( l
0
0

)

with operators A ∶ V → V ′, B ∶ Q → V ′, C ∶ Q → Q′, and D ∶ Z → V ′ and functional l ∶ V → ℝ defined as

⟨Au, v⟩ = 2𝜇(𝜖(u), 𝜖(v)), ⟨Bp, v⟩ = (p,∇ · v),⟨Cp, q⟩ = (p, q), ⟨D𝜂, v⟩ = (𝜂, v)
(26)

and ⟨l, v⟩ = ( 𝑓, v) + (h, v)𝜕Ω. (27)

To show the well-posedness of the constrained mixed formulation (25), the abstract theory for saddle-point problems
with small (note that 𝜆 ≫ 1) penalty terms (see chapter 3.4 in the work of Braess7) is applied. To this end, we introduce
the bilinear forms a(u, v) = ⟨Au, v⟩,

b(v, (p, 𝜂)) = ⟨Bp, v⟩ + ⟨D𝜂, v⟩, (28)

c((p, 𝜂), (q, 𝜂)) = ⟨Cp, q⟩ so that (25) is recast as follows: Find u ∈ V, (p, 𝜈) ∈ Q × Z satisfying

a(u, v) + b(v, (p, 𝜈)) = ⟨l, v⟩ ∀v ∈ V ,

b(u, (q, 𝜂)) − 𝜆−1(p, q) = 0 ∀(q, 𝜂) ∈ Q × Z.
(29)

The space Q × Z will be considered with the norm ||(p, 𝜂)|| = √||p||2 + ||𝜂||2, whereas V is considered with the H1 norm.
Following theorem 4.11 in the work of Braess,7 problem (29) is well-posed provided that the assumptions of the Brezzi
theory hold and, in addition, c is continuous and c and a are positive, that is,

a(u,u) ≥ 0 ∀u ∈ V and c((p, 𝜂), (p, 𝜂)) ≥ 0 ∀(p, 𝜂) ∈ Q × Z.

We review that the continuity and V ellipticity of a on Z⟂ was shown in Theorem 1, and as a(z, z) = 0, z ∈ Z, the form
is positive on V. Moreover, by Lemma 1 and the Cauchy–Schwarz inequality, we have that

b(v, (p, 𝜂)) = (p,∇ · v) + (v, 𝜂) ≤ √
3||p||||∇v|| + ||v||||𝜂|| ≤ √

3
√||v||2 + ||∇v||2√||p||2 + ||𝜂||2 ≤ 𝛽∗||v||1||(p, 𝜂)||

holds for any v ∈ V, (p, 𝜂) ∈ Q × Z. It is easy to observe that the continuity and positivity of the bilinear form c hold, and
thus, (29) is well-posed provided that the inf-sup condition is satisfied. We note that the proof requires extra regularity of
the boundary.

Lemma 6. Let Ω be with a smooth boundary and b be the bilinear form over V × (Q × Z) defined in (28). There exists
𝛽∗ = 𝛽∗(Ω) such that

sup
v∈V

b(v, (p, 𝜂))||v||1 ≥ 𝛽∗||(p, 𝜂)|| ∀(p, 𝜂) ∈ Q × Z.
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18 of 23 KUCHTA ET AL.

Proof. Let p ∈ Q and 𝜂 ∈ Z be given. Following Theorem 11.2.3 in the work of Brenner and Scott,42 there exists for
every p a v∗ ∈ V such that

p = ∇ · v∗, (30a)

||v∗||1 ≤ C(Ω)||p||. (30b)

The element v∗ is constructed from the unique solution of the Poisson problem, that is,

−Δw = p in Ω,
w = 0 on 𝜕Ω,

(31)

taking v∗ = −∇w. Observe that the computed v∗ ∈ Z⟂

−(z, v∗) = ∫
Ω

z∇w = ∫
𝜕Ω

wz · n − ∫
Ω

w∇ · z = 0 ∀z ∈ Z. (32)

The orthogonality of v∗ and (30a) yield that b(v∗ + 𝜂, (p, 𝜂)) = (p,∇ · v∗) + (𝜂, 𝜂) = ||p||2 + ||𝜂||2. Further, by
Cauchy–Schwarz and Young's inequalities and Lemma 1, we have

||v∗ + 𝜂||21 = ||v∗ + 𝜂||2 + ||∇(v∗ + 𝜂)||2
= ||v∗||2 + ||𝜂||2 + ||∇v∗||2 + 2(∇v∗,∇𝜂) + ||∇𝜂||2
≤ 2||v∗||21 + 2

(||𝜂||2 + ||∇𝜂||2) ≤ 2||v∗||21 + 2C(Ω)||𝜂||2
so that ||v∗ + 𝜂||1 ≤ c(Ω)||(p, 𝜂)||. Combining the observations, we obtain

sup
v∈V

b(v, (p, 𝜂))||v||1 ≥ b(v∗ + 𝜂, (p, 𝜂))||v∗ + 𝜂||1 =
||p||2 + ||𝜂||2||v∗ + 𝜂||1 ≥ 1

c
√||p||2 + ||𝜂||2 = 1

c
||(p, 𝜂)||.

We remark that none of the constants of problem (29) depend on 𝜆 despite the norm of Q × Z being free of the parameter
(cf. also the works of Klawonn50,51). Observe also that with the H1 norm on V, the boundedness constant of a depends
on 𝜇 (cf. Theorem 1), and thus, the parameter shall be included in the norm to get a 𝜇-independent preconditioner. This
choice corresponds to considering the space V with the norm u →

√
2𝜇||𝜖(u)||2 + ||u||2.

Motivated by the above, we shall consider as the preconditioner for the well-posed problem (29) a Riesz
map  ∶ (V × Q × Z)′ → (V × Q × Z) with respect to the inner product inducing the norm (u, p, 𝜂) →√

2𝜇||𝜖(u)||2 + ||u||2 + ||p||2 + ||𝜂||2, that is,

 =

( A + M
C

I

)−1

, (33)

where M and I are as defined in (13) and (11), respectively. Similar preconditioners for the Dirichlet problem have been
discussed in the works of Klawonn51 and El Maliki et al.52

Remark 1. (Lemma 6 in the discrete case).
The continuous inf-sup condition can be extended to the Taylor–Hood discretizations in the following way. We con-
sider Vh ⊂ V , Qh ⊂ Q approximated with the lowest-order Taylor–Hood element. Given ph ∈ Qh, both the elements
v∗h ∈ Vh and wh ∈ Qh from Lemma 6 are found as the solution to the mixed Poisson problem

(v∗h, v) + (∇hwh, v) = 0 ∀v ∈ Vh,

(∇hq, v∗h) = −(ph, q) ∀q ∈ Qh.

The problem is well-posed due to the weak inf-sup condition

sup
vh∈Vh

(vh,∇hqh)||vh|| ≥ C||qh||1 ∀qh ∈ Qh.

Since z ∈ Vh, a direct calculation shows that the orthogonality condition (32) is satisfied.
Both in the above and in the construction of the proof of Lemma 6, we relied on a well-posed mixed Poisson problem

to obtain orthogonality with respect to the kernel. We note that the stable Stokes element P2 − P0 does not allow for
such a construction and does not give h uniform bounds.
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KUCHTA ET AL. 19 of 23

To show that the preconditioner (33) is robust with respect to 𝜆, we consider (25) with 𝜇 = 1 and data h = 0 and
f = u∗ defined in Example 2, whereas the value of 𝜆 varies in the interval

[
1, 1015]. Moreover, an exactly incompressible

case shall be considered, where the operator C is set to zero.
The spaces V and Q are approximated by lowest-order Taylor–Hood elements for which the discrete inf-sup condition

from Lemma 6 holds following Remark 1. As with the previous experiments, the approximate inverse of A + M and C
blocks are realized by a single multigrid V cycle. The final block corresponding to Z is an identity due to the employed
orthonormal basis. The system is solved using the MinRes method and absolute tolerance 10−8 for the preconditioned
residual as a convergence criterion.

From the results of the experiment, summarized in Table 8, it is evident that the iteration count is bounded in 𝜆 as well
as in the discretization parameter. We note that the error in the orthogonality constraint is comparable to that reported
in Table 5 for the Lagrange multiplier formulation of the pure displacement problem.

6.1 Single–saddle-point formulation
Using formulation (29), the weak solution of (24) is computed from a double–saddle-point problem. However, if consid-
ered in Z⟂ × Q, the mixed formulation of linear elasticity has just a single saddle point. A formulation that preserves this
property is pursued next.

We begin by observing a few properties of the solution of the double–saddle-point problem.

Remark 2. (Properties of the solution of (29)).
(a) In the solution triplet u ∈ V, p ∈ Q, 𝜈 ∈ Z, the rigid motion satisfies (𝜈, z) = ⟨l, z⟩ for all z ∈ Z. In particular,
𝜈 = 0 if and only if l ∈ Z0. (b) The triplet u, p, 𝜈 solves (29) if and only if u, p, 0 satisfies (29) with l ∈ Z0.

We note that the first property follows by testing (29) with v ∈ Z, p = 0, and 𝜂 = 0, whereas the second is readily
checked by direct calculation. Note also that if the orthonormal basis of the space of rigid motions is employed, the
Lagrange multiplier in (29) is computed simply by evaluating the right-hand side.

Due to Remark 2, it is only u ∈ V and p ∈ Q that are the nontrivial unknowns of the double–saddle-point problem
(29). The pair can be obtained also as a solution of a system with a single saddle point.

Theorem 7. Let A ∶ V → V ′, B ∶ Q → V ′, and C ∶ Q → Q′ be the operators defined in (26) and Y ∶ V → V ′ be such
that ⟨Yu, v⟩ = (uZ, vZ), where V ∋ u = uZ + uZ⟂ and uZ ∈ Z, uZ⟂ ∈ Z⟂. Then, for each l ∈ V′, there exists unique
u ∈ V, p ∈ Q such that


(

u
p

)
=
(

A + Y B
B′ −𝜆−1C

)(
u
p

)
=
(

l
0

)
. (34)

Moreover, if l ∈ Z0, then u ∈ Z⟂, and the triplet u, p, 0 is the unique solution of (29) with the right-hand side l.

Proof. We apply the results in the work of Braess7 (chapter 3.4 thereof) for the abstract saddle-point systems with
penalty terms. To this end, we observe that operators A + Y, B, and C are clearly bounded on the respected spaces,
whereas C is coercive on Q. The inf-sup condition for B can be verified as in the proof of Lemma 6. Indeed, let v∗ ∈ V
be the element constructed in (31). Then, by (30a) and (30b), we have

sup
v∈V

⟨Bp, v⟩||v||1 = sup
v∈V

(p,∇ · v)||v||1 ≥ (p,∇ · v∗)||v∗||1 ≥ 1
C(Ω)

||p||.
TABLE 8 Iteration counts of the preconditioned minimal residual method
for the mixed linear elasticity problem (25) and different values of Lamé
constant 𝜆. The exact incompressibility case is denoted by 𝜆 = ∞. The iteration
counts remain bounded for the considered values of the parameter

dim(V) dim(Q) 𝝀 maxZ , 𝝀|(uh , z)|
𝟏𝟎0 𝟏𝟎4 𝟏𝟎8 𝟏𝟎12 𝟏𝟎15 ∞

14,739 729 81 87 88 87 88 90 9.56E− 07
107,811 4,913 78 77 80 79 82 79 3.66E− 06
823,875 35,937 69 72 72 72 72 72 4.02E− 05
6,440,067 274,625 67 66 66 66 67 65 6.68E− 05
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20 of 23 KUCHTA ET AL.

TABLE 9 Iteration counts of the preconditioned minimal residual method for
the mixed linear elasticity problem (34) and different values of Lamé constant 𝜆.
The exact incompressibility case is denoted by 𝜆 = ∞. The iteration counts
remain bounded for the considered values of the parameter

dim(V) dim(Q) 𝝀 maxZ , 𝝀|(uh , z)|
𝟏𝟎0 𝟏𝟎4 𝟏𝟎8 𝟏𝟎12 𝟏𝟎15 ∞

14,739 729 80 89 103 97 97 104 2.59E− 05
107,811 4,913 60 91 94 93 93 92 8.79E− 05
823,875 35,937 48 66 75 69 71 66 4.42E− 04
6,440,067 274,625 36 49 50 52 50 50 5.35E− 04

Next, let C1 be the constant from Korn's inequality (5), whereas C2 should denote the constant from inequality (9c).
Using decomposition u = uZ + uZ⟂ and ||u||21 ≤ 2(||uZ⟂ ||21 + ||uZ||21), the coercivity of A + Y on V now follows

⟨(A + Y )u,u⟩ = 2𝜇(𝜖(u), 𝜖(u)) + (uZ,uZ) = 2𝜇(𝜖(uZ⟂ ), 𝜖(uZ⟂ )) + (uZ,uZ)

≥ 2𝜇C1||uZ⟂ ||21 + C−2
2 ||uz||21 ≥ 1

2
min(2𝜇C1,C−2

2 )||u||21.
To verify that u ∈ Z⟂, Equation (34) is applied to the pair z, 0, where z ∈ Z is arbitrary, yielding (uZ, z) = ⟨l, z⟩ = 0

as l is in the polar set of Z. From u ∈ Z⟂, it follows that the last equation in (25) holds, whereas with 𝜈 = 0, the first
two equations to be satisfied by u, p are precisely (34). This verifies the final statement from the theorem.

Using the equivalence of norms shown in Lemma 3 and operator preconditioning, the preconditioner for the well-posed
problem (34) is chosen as

 =
(

A + M
C

)−1

(35)

with M defined in (13).
To show that  defines a parameter robust preconditioner for , we reuse the experimental setup from the previous

section, that is, we consider (25) with 𝜇 = 1, h = 0, and f = u∗ (see Example 2) and 𝜆 drawn from the interval[
1, 1015]. The operators are discretized with the P2 − P1 Taylor–Hood element that is stable for the problem following

Lemma 6. Note that the discretization of operator A + Y in (34) leads to a dense matrix; however, similar to Section 5,
its assembly is not needed to compute the action. As with the double–saddle-point problem, the action of the discrete
preconditioner is computed with AMG, whereas the system is solved with the MinRes method and absolute tolerance
10−8 for the preconditioned residual norm. We remark that the iterative solver uses a right-hand side orthogonalized with
the discrete projector P⊤ from (21) (cf. Theorem 7).

The results of the experiment are summarized in Table 9. We observe that with the proposed preconditioner, the
iterations are bounded both in 𝜆 and the discretization parameter. The table also lists the error in the orthogonality
constraint (uh, z) = 0∀z ∈ Z. With the chosen convergence criterion, the error is about factor 10 larger than for the
double–saddle-point formulation (cf. Table 8), whereas on the finer meshes, fewer iterations of the current solver are
required for convergence.

7 CONCLUSIONS

We have studied the singular Neumann problem of linear elasticity. Five different formulations of the problem have
been analyzed, and mesh-independent preconditioners have been established for the resulting linear systems within the
framework of operator preconditioning. We have proposed a preconditioner for the (singular) mixed formulation of lin-
ear elasticity, which is robust with respect to the material parameters. Using an orthonormal basis of the space of rigid
motions, discrete projection operators have been derived and employed in a modification to the CG method to ensure
optimal error convergence of the solution.
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APPENDIX

EIGENVALUE BOUNDS FOR LAGRANGE MULTIPLIER PRECONDITIONERS
Bounds for the eigenvalues of operators E and M from (7) and (16) are approximated by considering the eigenvalue
problems (

A B
B⊤

)(
u
p

)
= 𝜆Bi

−1
(

u
p

)
(A1)

with the left-hand side as the discretization of (7) and Bi, i ∈ {E,M} as discretizations of preconditioners i from
(16). The spectrum of the symmetric, indefinite problem (A1) is a union of negative and positive intervals [𝜆−min, 𝜆

−
max]

and [𝜆+min, 𝜆
+
max]. Following the analysis in Theorems 3 and 4, negative bounds equal to −1 are expected for both
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TABLE A1 Spectral bounds for eigenvalue problems (A1). (Top) The body is a
cube. (Bottom) The body is a cylinder

Size 𝜿 𝝀−
min +𝟏 𝝀−

max +𝟏 𝝀+
min −𝟏 𝝀+

max −𝟏
87 1.0000 −6.83E− 11 2.92E− 11 −4.36E− 11 5.89E− 12
381 1.0000 −1.38E− 10 7.00E− 12 −1.61E− 10 5.55E− 15

B
E

2,193 1.0000 −5.88E− 10 1.65E− 11 −6.23E− 10 9.55E− 15
14,745 1.0000 −1.10E− 08 −4.27E− 09 −2.00E− 08 1.73E− 14
87 1.0001 −6.64E− 11 4.46E− 12 −1.10E− 04 1.03E− 11
381 1.0002 −1.35E− 10 −1.06E− 11 −2.33E− 04 −5.33E− 12

B
M

2,193 1.0004 −5.73E− 10 −1.12E− 11 −4.00E− 04 5.91E− 12
14,745 1.0005 −2.37E− 09 −7.73E− 11 −4.97E− 04 −4.47E− 11
210 1.0000 −3.91E− 12 −4.46E− 13 −4.58E− 12 9.33E− 15
462 1.0000 −3.82E− 12 −8.91E− 13 −4.55E− 12 5.77E− 15

B
E

1,764 1.0000 −9.32E− 12 −4.40E− 12 −1.08E− 11 1.31E− 14
8,292 1.0000 −3.71E− 11 −1.74E− 11 −4.06E− 11 6.26E− 14
210 1.0752 1.84E− 02 7.00E− 02 −7.00E− 02 −2.57E− 06
462 1.0219 1.94E− 03 2.14E− 02 −2.14E− 02 −2.21E− 06

B
M

1,764 1.0069 1.14E− 03 6.82E− 03 −6.82E− 03 −4.57E− 07
8,292 1.0022 1.60E− 04 1.66E− 03 −2.17E− 03 −2.10E− 08

preconditioners. Further, the positive eigenvalues are bounded from above by 1. Finally, 𝜆+min = −1 for E, whereas the
constant C = C(Ω) from Korn's inequality determines the bound for M .

In the experiment, Ω as a cube from Example 2 and a hollow cylinder with inner and outer radii 1
2
, 1 and height 2

are considered. Lamé constants 𝜇 = 384 and 𝜆 = 577 are used. For both bodies, C ≈ 1 is observed (cf. Table A1). The
remaining bounds agree well with the analysis.
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