
Solving Linear Systems

The physical relevance of computations based on the model problems
arising from the electrical activity in the heart depends on high accuracy of
the solution. High accuracy implies the solution of large linear or nonlinear
systems of ODEs and PDEs. This chapter deals with solution algorithms for
the discretization of (linear) PDEs, which is a huge research field around
the world. A lot of the research in this field has been centered around sim-
ple model problems such as the Poisson problem, where a solid theoretical
framework has been developed. We will briefly review this theory in the sim-
plest possible manner. Then, in the end of the chapter, we explain how the
powerful concept of (block) preconditioning extends these algorithms also to
systems of PDEs arising from the discretization of the Bidomain model.

1 Overview

As discussed in the previous chapter, the computation of the electrical activity
in the heart and body requires the solution of large linear systems. With
today’s extremely fast computers, when even desktop computers are capable
of performing more than 109 floating point operations per second, this might
not seem as a problem. But it is. In our quest for more accurate solutions
to models of physical problems, we tend to solve larger and larger linear
systems. This trend is unavoidable, because the accuracy of the solution is
proportional to some power of the number of unknowns.

Let us for the moment consider a linear system arising from a finite ele-
ment discretization of a partial differential equation of the form

−∇2u = f, (1)

equipped with suitable boundary conditions. The linear system is then be-
comes

Auh = b, (2)

where A typically is large and very sparse. We have used the subscript h to
emphasize that uh is an approximation of u and that the accuracy depends
on h, which is the typical distance between the vertices in the grid. Because
uh approaches u as h approaches zero, we want to be able to chose h as
small as possible. The smallest possible h is dictated by the largest number
of unknowns that can be handled by the computer. On a modern desktop
computer we can solve (2) with N ∼ 107 unknowns provided that we use an
optimal solution algorithm. However, we may want even larger values of N
and, as we have already seen, we want to solve systems of partial differen-
tial equations leading to even larger linear systems. Also, the linear systems
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arising from the Bidomain equations are more challenging to solve that the
system (2) generated by the Poisson equation (1).

The matrices arising from low order discretization of PDEs are typically
very sparse, that is, relatively few entries are non-zeroes. In fact, the number
of non-zeroes in each row is usually a fixed small number, e.g., between five
and ten and the matrices therefore require O(N) floating point numbers of
storage. For such matrices, it is essential that only the nonzero entries are
stored. The matrix may be banded or completely unstructured depending
on the structure of the underlying grid. For banded matrices it is possible
to develop an unpivoted factorization procedure using O(Nb2) floating point
operations, where b is the bandwidth of the system. However, the bandwidth
is usually at least O(N1/2), which makes the total solution algorithm O(N2)
in number of floating point operations. The storage requirement is usually
somewhat smaller, O(N3/2) floating points. The case is even worse for un-
structured matrices.

The improvement of the computers have for the last 30 years been re-
markably well predicted by Moore’s law, which states that the number of
transistors per area will double every 18 month1. A consequence of this is
that the speed of the CPU and the amount of RAM memory double in the
same period. In other words, the speed of the CPU has improved roughly
by a factor 105 the last 30 years. In recent years, the amount of RAM has
increased at a similar rate. Assuming that this law will be valid also for the
next 10 years, we expect a 50 times faster CPU with 50 times more RAM
memory. Still, it may very well be that the accuracy is questionable and that
we need as many unknowns as possible. Hence, for simplicity we assume that
it is possible to make the matrix with 50N unknowns. It would then not
be possible to solve the system, because the banded Gaussian elimination is
O(N3/2)) in storage, which in this concrete case means ≈ 350N . However,
the situation is even worse for the number of floating point operations, which
is O(N2), or 2500N , in this concrete case. Because the CPU is able to per-
form 50N operations per second, we would then need to wait 50 times longer
for the answer than today. This is not acceptable and we therefore have to
search for faster methods requiring less storage. More precisely, we shall seek
optimal methods requiring O(N) operations and O(N) memory allocations
for a system with N unknowns.

2 Iterative Methods

As discussed above, direct methods have two main problems:

– the required storage is O(Nα) floating point numbers, and
– the required floating points operations are O(Nβ),

1 Moore never formulated the law clearly, but this is commonly known as Moore’s
law. However, the doubling period may vary.
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where α, β > 1 and the matrix to be solved is very sparse, in fact the re-
quired storage is O(N). These observations have lead to the development
of algorithms that take advantage of the particular structures of the ma-
trices. This field of research is huge and successful [5]. As seen in Table 2,
the computational time needed to solve the problem with a highly efficient
multigrid algorithm is about a 1% of the banded Gaussian elimination, when
using 2572 unknowns. Moreover, banded Gaussian elimination runs out of
memory at this point and can not be compared with the iterative methods.
Still, it is worth noting that the multigrid algorithms using 10252 unknowns
outperforms banded Gaussian elimination with 2572 unknowns.

Table 1. The CPU time (in seconds) required to solve a Poisson problem in 2D, us-
ing different types of solution algorithms, with respect to the number of unknowns.
For the iterative algorithms, the stopping criterion requires that the L2-norm of
the residual is reduced by a factor of 108. The measurements are obtained on an
Itanium2 1.3 GHz processor.

Unknowns Gauss Elim. CG CG/MILU MG CG/MG
652 0.29 0.12 0.04 0.04 0.04
1292 4.30 1.07 0.28 0.15 0.18
2572 68.49 12.30 2.77 0.64 0.92
5132 - 123.06 18.65 2.89 4.08
10252 - 969.21 111.31 12.07 16.90

2.1 The Richardson Iteration

Here we will briefly introduce iterative methods designed to solve linear sys-
tems. We will begin with classical schemes and then move on to more ad-
vanced methods. Our ultimate goal is to derive an optimal method for the
linear system arising from discretizations of the Bidomain model. We want
to solve the linear system,

Au = b.

The matrix, A, is sparse, but A−1 is in general full and require the storage
of N2 floating points. When N ∼ 107, which is quite common, the inverse
can neither be computed nor stored. However, the matrix-vector product,
w = Av, requires only O(N) operations. Therefore, a first attempt for a
more memory efficient algorithm might be a fix point iteration,

un = un−1 − τ(Aun−1 − b). (3)

This algorithm is commonly called the Richardson iteration or the simple
iteration. The obvious question is whether the iteration converges to the so-
lution or not. A standard approach to analyze iterative methods is to assume
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that the solution u is known, such that we can investigate how the error
behaves. The error in the n’th iteration is defined as

en = un − u. (4)

Hence, by subtracting u from both sides of (3) and using the relation, Au = b,
we obtain a recursion for the error,

en = en−1 − τAen−1. (5)

The error at the n’th iteration, en, should then be smaller, in some sense,
than the previous ones. To quantify the error behavior in ”some sense” we
introduce the discrete L2-norm,

‖e‖L2 = (
1
N

N∑

i=1

e2
i )

1/2, (6)

and the discrete L2 inner product,

(e, f)L2 = (
1
N

N∑

i=1

eifi). (7)

The corresponding matrix norm is defined by

‖A‖ = sup
v

(Av, v)L2

(v, v)L2

.

We will in the following drop the subscript L2.
A necessary and sufficient condition for convergence is that the error

decreases during the iteration,

‖en‖ ≤ ρ‖en−1‖,

where 0 ≤ ρ < 1. This imply that the Richardson iteration is a contraction
and convergent if and only if

‖I − τA‖ ≤ ρ < 1, (8)

or
0 < (1 − ρ) ≤ ‖τA‖ ≤ (1 + ρ) < 2, (9)

From (5) and (8) the error will decrease

‖en‖ = ‖(I − τA)en−1‖ ≤ ‖I − τA‖‖en−1‖ ≤ ρ‖en−1‖.

A more detailed mathematical description of this methods and the corre-
sponding convergence proofs can be found in Chapter 3 in [13].
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The parameter τ can be chosen and a possible choice is τ = c
‖A‖ , with

c < 2. Hence, ‖A‖ has to be computed or estimated. In the general case, the
computation of ‖A‖ is not easy, but for the applications considered in this
chapter it is sufficient to assume that it is on the form τ2N2/d, where d is the
number of space dimensions, and manually tune τ2. The estimate does not
need to be very accurate, but a too small τ2 will lead to divergence.

This iteration has some of the basic characteristics we are seeking. The
matrix requires O(N) floating points in storage, which imply that

– Each iteration involves O(N) floating point operations.
– The entire method requires only the storage of O(N) floating points.

This is a potential advantage over direct methods, but we will see that it is
not enough. The Richardson iteration has poor performance for matrices that
come from the discretization of PDEs. To explain this we introduce a FDM
discretization of the Poisson problem in 1D. This example is very simple, but
it still has the basic features of the problems that we want to address.

2.2 The FDM Discretization Poisson Equation in 1D

Efficient algorithms take advantage of particular properties of the matrix.
The classical iterations; Jacobi, Gauss-Seidel, SOR, and SSOR are usually
more efficient than the Richardson iteration, but they are not general purpose
algorithms. Some properties are required. This also apply to the Conjugate-
Gradient method. Optimal solution algorithms like multigrid and domain
decomposition need even more properties to be present. Since multigrid was
introduced in 1960 and domain decomposition was introduced already in
1870, these algorithms have been extensively studied by many researchers
and the theoretical framework has reached a high degree of sophistication
and abstraction [4] and [13]. We will start by explaining the underlying ideas,
in the simplest possible fashion. In this respect, the exposition is similar to
[6].

First, the basic properties of the FDM discretization of the Poisson prob-
lem in 1D are reviewed. This model problem reads

−u′′(x) = f(x), x = (0, 1), u(0) = 0, u(1) = 0. (10)

We are not interested in any particular solution, but rather the class of prob-
lems on this form. We therefore introduce the differential operator L = − ∂2

∂x2 ,
such that the problem can be written as

Lu = −u′′(x) = f(x), x = (0, 1), u(0) = 0, u(1) = 0. (11)

The operator L has the following properties:

– It is positive definite; this means that (Lu, u) > 0 for all relevant functions
u.
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– It is symmetric; this means that (Lu, v) = (u, Lv) for all relevant func-
tions u.

– It is invertible for any f ∈ C(0, 1); this means that the problem (10) has
a unique solution for f ∈ C(0, 1).

These properties can be derived directly from the definition of L, see, e.g.,
[26].

Later we will see that a lot of the intuition concerning the solution of
PDEs and the solution algorithms is closely connected to eigenvalues and
eigenfunctions for the differential operators. The definition of eigenvalues
and eigenfunctions for differential operators is equivalent to the definition for
matrices in linear algebra, i.e., λ is an eigenvalue of L if

Lw = λw, λ ∈ C, (12)

and w is the corresponding eigenfunction. Because the operator is symmetric
and positive definite, the eigenvalues are real and positive, and the eigenfunc-
tions are orthogonal. In fact, it is known that the eigenvalues for L in (11)
are

µk = π2k2, for k = 1, . . . ,∞,

and the eigenfunctions are

wk(x) = sin(kπx), for k = 1, . . . ,∞.

These properties can be derived directly from the definition of L, see, e.g.,
[26].

The first four eigenfunctions are shown in Figure 1. Notice that for k
small, the eigenvalues are small and the corresponding eigenfunctions are low
frequency functions. However, as k → ∞, µk → ∞ and the eigenfunctions
oscillates between 1 and -1 with a period π

k which approaches zero. This
relation between the smoothness of the eigenfunctions and the magnitude of
the eigenvalues is typical for elliptic PDEs, regardless of dimensions, domains
and boundary conditions.

This 1D problem can be solved analytically, but this is not feasible for
the Poisson problem on general domains in 2D or 3D. However, discretization
techniques like the finite element method (FEM)2 or the finite difference
method (FDM)3 are general purpose strategies. The next step is to make an
approximation of the problem such that we arrive at a linear system that can
be solved. Let the grid consist of grid points xi = ih. A FDM discretization
of (10) reads,

−ui−1 − 2ui + ui+1

h2
= fi, i = 1, . . .N, (13)

u0 = 0, (14)
uN+1 = 0. (15)

2 FEM requires that it is possible to generate a reasonable grid.
3 Also FDM is hard to apply in general geometries.
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Fig. 1. The first four eigenfunctions.

These equations can be written as the linear system,

Auh = f, (16)

where

A =
1
h2





2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




, u =





u1

.

.

.
uN




, f =





f1

.

.

.
fN




. (17)

The unknowns ui are pointwise approximations of u, ui ≈ u(xi) and fi =
f(xi). This matrix will be used extensively to explain the behavior of the
various algorithms throughout this chapter. Although this matrix is very
simple, it has the characteristic properties that will be studied and used
throughout most of this chapter.

The eigenvalues of this system are

µk =
4
h2

sin2(
kπh

2
), k = 1, . . . , N, (18)

and the corresponding eigenfunctions are

vk,i = vk(xi) = sin(kπxi), k = 1, . . . , N, (19)
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where vk,i is the value associated with the node i at the point xi and the
k’th eigenfunction. Similar to the continuous case, the large eigenvalues cor-
respond to high frequency eigenvectors, whereas smooth eigenfunctions are
associated with small eigenvalues. This property is exactly what is exploited
in the multigrid algorithm which we will discuss below.

A more detailed description of the continuous and discrete Poisson prob-
lem can be found in [26].

2.3 The Richardson Iteration Revisited

We saw in Section 2.1 that the Richardson iteration is a memory efficient
method to solve a general matrix equation, given a reasonable estimate on
‖A‖. In order to estimate the computational work needed by the method,
we have to estimate the number of floating point operations the CPU has to
perform. To this end, we have to estimate how many iterations that will be
needed.

The first thing to consider is a stopping criterion, designed to prevent
endless iterations. We are seeking a numerical approximation uh of the actual
unknown u and have introduced an error, eh, inherited from the numerical
method. In the previous Chapter ?? we saw that the error could be estimated,

‖eh‖ = ‖u − uh‖ ≤ chα,

where h is a characteristic grid size parameter directly depending on the num-
ber of unknowns. This discretization error eh determine the level of accuracy
needed by the iterative method. Let en

h be the error at the n’th iteration.
We can split this error into two parts, en

h = en + eh, where en is the part
induced by the iterative method and eh and is the discretization error. It is
then reasonable to require that both contributions are equally sized, en ≈ eh.
Hence, we will stop the iteration when ‖en‖ ≤ ‖eh‖. The concretization of
such a stopping criteria is not an easy task. The discretization error, eh, is of
course in general not available. However, the residual can be computed,

rn = b − Aun.

From the residual-error equation

Aen = rn,

we obtain
‖en‖ ≤ ‖A−1‖‖rn‖.

Another possible technique is to check un − un−1. We will not go deeply into
a discussion about various stopping criteria here. However, a frequently used
criterion stops the iterating when

‖rn‖ < γ,
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where γ is a small number which is usually found by numerical experiments.
The second parameter that determines the number of iterations is the

convergence rate or minimal error reduction per iteration, which will be ex-
plained below. The error at the n’th iteration is governed by

en = (I − τA)en−1. (20)

Given that ‖I − τA‖ = ρ < 1, we saw that the iteration was convergent, but
we have still not estimated the number of iteration to reach a given stopping
criterion. Let the convergence rate ρ be defined as

ρ = ‖I − τA‖.

Then
‖en‖ ≤ ρ‖en−1‖. (21)

Moreover,
‖en‖ ≤ ρn‖e0‖. (22)

Assuming that ε is the discretization error, we can tolerate an iteration error,

‖en‖ ≤ ε (23)

If we assume equality in (22) and (23) we get

‖en‖ = ρn‖e0‖ = ε (24)

Hence, the number of iterations can be estimated as

n =
log ε

‖e0‖

log ρ
. (25)

The goal of this chapter is to present algorithms where ρ ≤ c, where c < 1
is a constant independent of the grid size. If the convergence criterion, ε is
fixed, independent of the grid size, then n will be bounded independent of
the grid size. This is refereed to as an optimal algorithm.

Finally, we will consider some additional properties that are typical for the
matrices we are working with. The matrices are symmetric positive definite
and for these matrices it is known that,

‖A‖ = λmax(A), ‖A−1‖ = λ−1
min(A),

where λmax and λmin are the largest and smallest eigenvalues, respectively.
From the eigenvalues for the 1D discretization of the Poisson equation (18)
we have,

λmax(A) =
4
h2

, λmin(A) = π2.
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The ratio between the largest and the smallest eigenvalues is commonly called
the condition number of the matrix, κ(A),

κ(A) =
λmax(A)
λmin(A)

. (26)

Hence, the condition number of the matrix A in (17) is O(h−2). Notice that
this condition number is typical for elliptic PDEs regardless of the dimension,
the boundary conditions and the domain.

These eigenvalues are now used to gain more insight in what will happen
during the iteration. Let the initial error be expanded in terms of eigenvectors,

e0 =
N∑

k=1

ckwk,

where, by orthonormality, the coefficients are determined by

ck = (e0, wk).

Lets chose τ = c
λmax

. The error at the n’th iteration is then from (20),

en =
N∑

k=1

(1 − cλk

λmax
)nckwk.

If 0 < c < 2, then the iteration is convergent in the sense that,

‖en‖ → 0, as n → ∞.

To see this, we note that

‖en‖ = (en, en)1/2 = (
1
N

N∑

k=1

(1 − cλk

λmax
)nckwk, (1 − cλk

λmax
)nckwk)

= (
1
N

N∑

k=1

(1 − cλk

λmax
)2nc2

k) ≤ (1 − c)2n‖e0‖,

where we have used that {wk}N
k=1 are orthogonal.

Still, different parts of the error will decrease at different speed. This is
clarified in the following, by considering the error components corresponding
to the high and low eigenvalues. Let the initial error, e0, be dwN , where d
is a constant and wN is the N ’th eigenvector, corresponding to the largest
eigenvalue. The error after the first iteration will then be

e1 = (1 − cλmax

λmax
)wN = (1 − c)e0.

For instance, the choice c = 0.9 implies an error reduction by a factor 0.1
for the error component associated with wN . We also notice that choosing a
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smaller c leads to slower convergence. Similarly, all the high frequency parts
of the error are removed rather efficiently.

However, the situation is quite different for the low frequency parts of
the error. Let e0 be dw1, where d is a constant and w1 is the eigenvector
corresponding to the lowest eigenvalue. Then we have

e1 = (1 − cλmin

λmax
)w1 = (1 − c

K(A)
)w1 ≈ e0,

where κ(A) is the condition number of the matrix. As observed for the 1D
discretization of the Poisson equation, the condition number is ∼ h−2, which
is really bad. Moreover, reducing c only makes things worse.

The second disadvantage with the Richardson iteration is that it relies on
the estimation of the largest eigenvalue. The iteration will diverge if τ is not
properly chosen.

Even if this method is primitive and unusable for large linear systems,
it captures the basics of the classical iterations. Some parts of the error is
efficiently dealt with, while other remain essentially unchanged. In particular,
the smooth components are troublesome. This property will be exploited
later, when we consider the (relaxed) Jacobi and Gauss-Seidel methods.

2.4 Preconditioning

An ”obvious” generalization of the Richardson iteration is to include a matrix
B, usually called a preconditioner, in the following way:

un = un−1 − τB(Aun−1 − b). (27)

The error iteration will then be

en = en−1 − τBAen−1, (28)

which is convergent if and only if

‖I − τBA‖ < 1. (29)

Although this idea seems quite simple, it is remarkably powerful. In fact,
nearly all the methods we will consider in the following, multigrid and domain
decomposition as well as Jacobi and Gauss-Seidel fit into this framework. It
is the general form of any linear iteration. The only exception in this chapter
is the Conjugate Gradient method.

Notice that we will often refer to B as an operator or matrix. The reason
is that if B is a linear iteration it can, in principle, always be represented as
a matrix. Still, it is usually easier and more efficient to implement B as an
algorithm. To be more specific, only the action of B on a vector, u = Bv, has
to be implemented.

We will now go briefly go through the classical iterations. These methods
are generally not usable to solve matrices with more than 1000 unknowns.
Still, they deserve attention, at least for the following four reasons:
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– They are used as smoothers in multigrid algorithms.
– They serve to illustrate important aspects of the multigrid method.
– Domain decomposition algorithms are generalizations of the block ver-

sions of these algorithms.
– Our final optimal block preconditioner is an inexact variant of the block

Jacobi method.

2.5 Jacobi

The simplest algebraic operator splitting technique is the Jacobi method.
This algorithm is easily explained by considering the i’th equation in the
matrix equation,

N∑

j=1

aijuj = bi.

Rearranging the i’th equation, we get

ui =
1
aii

(bi −
∑

i$=j

aijuj).

The problem is of course that the other unknowns, uj, are not yet computed.
However, we can assume that we have either initial guesses or the values from
the previous iteration, which suggests the Jacobi iteration:

un
i =

1
aii

(bi −
∑

j $=i

aiju
n−1
j ). (30)

Notice that all the variables in (30) can be updated independently. This is
important when we use parallel computers. On such computers the unknowns
may be distributed on different processors and the update can then be done
in parallel. This issue is discussed in Chapter ??.

The strength of the Richardson iteration (27) now becomes apparent be-
cause the Jacobi iteration is included. To see this, consider

un = un−1 − D−1(Aun−1 − b),

with B = D = diag(A) and τ = 1. In the next section this framework will be
used to analyze the convergence properties and the corresponding problems
with this iteration.

Properties and Problems. To understand when the Jacobi method is
convergent we consider the error iteration,

en = en−1 − D−1Aen−1. (31)
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Hence, the iteration is convergent if and only if

ρ = ‖I − D−1A‖ < 1,

or
0 < ‖D−1A‖ < 2.

It is not easy to understand the behavior of this algorithm directly from
these inequalities. We therefore go briefly through the 1D discretization of
the Poisson equation. The Jacobi iteration matrix associated with (17) is

J = I − D−1A =
1
2





0 1
1 0 1

. . . . . . . . .
1 0 1

1 0




.

Inserting the eigenfunctions of (17),

wk = sin(kπxj), k = 1, . . .N. (32)

where xj = jh, gives,

(I − D−1A)wk = wk − D−1µkwk = (1 − h2

2
µk)wk,

where µk is given in (18). Therefore, wk is an eigenfunction of J , with the
corresponding eigenvalue

λk = 1 − h2

2
µk = 1 − h2

2
4
h2

sin2(
kπh

2
) = cos(kπh), k = 1, . . . , N. (33)

The eigenvalues are shown in Figure 2.
Notice that from Figure 2 it seems like the eigenvalues λk ∈ [−1, 1]. In fact,

λk ∈ (−1, 1) and the iteration is convergent. However, the convergence rate,
determined by λmax and λmin depends strongly on the number of unknowns.
To see this we use the Taylor expansion of cos(x) around x = π,

cos(x) = cos(π) − sin(π)(x − π) − cos(π)(x − π)2 + . . . (34)

Letting x = Nπ
N+1 in (34), corresponding to the N ’th eigenvector in (33), we

get

λN = cos(
Nπ

N + 1
) ≈ cos(π)+cos(π)(

πN

N + 1
−π)2 = 1−(

π

N + 1
)2 = 1−(πh)2.

The same estimate is obtained for the lowest eigenvalue, with N = 1, and
using the Taylor expansion around x = 0. This means that the error cor-
responding to the most high frequent eigenfunction, k = N , and the most
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Fig. 2. Eigenvalues of the Jacobi Matrix.

Table 2. Number of iterations for the Jacobi method to achieve an error reduction
by a factor 10−4 for the 1D discretization of the Poisson problem.

Unknowns Convergence rate Iterations
10 1 − 8.2e−2 108
100 1 − 9.7e−4 9514
1000 1 − 9.8e−6 9.4·105

10000 1 − 9.9e−8 9.3·107

low frequent eigenfunction, k = 1, only decreased by a factor 1− (πh)2. The
number of Jacobi iterations needed to reduce the error by a factor 10−4 is
shown in Table 2.5.

Still, for a subset of the eigenfunctions, N
4 ≤ k ≤ 3N

4 , the convergence is
fast, in the sense that ρ < 0.71. Hence, the Jacobi method performs quite
well for at least half of the error components. The iteration would therefore
be efficient if the initial error only contained these parts. Naturally, it is hard
to construct such an initial guess.

2.6 Relaxed Jacobi

By looking at the Jacobi iteration (30) we see that ui is computed based on
uj for j *= i. A natural extension is to include information from the previous
iteration,

un
i = (1 − ω)un

i +
ω

aii
(bi −

∑

j $=i

aiju
n−1
j ), (35)

where ω can be chosen. The inclusion of the data from the previous iteration
is commonly called relaxation. As earlier we can express this iteration in
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terms of the Richardson iteration (3)

un = un−1 − ωD−1(Aun−1 − b),

where B = D = diag(A) and ω = τ . The necessary condition for convergence
is that

0 < ‖ωD−1A‖ < 2.

Again, we briefly review the properties of this iteration in terms of eigenvalues
and eigenfunctions. The eigenfunctions are the same as for Jacobi (32), and
a simple calculation shows that the eigenvalues are

λk(ω) = 1 + ω(cos(kπh) − 1), k = 1, . . . , n. (36)

The eigenvalues for ω = 2/3 are shown in Figure 3. The spectrum has changed
from (−1, 1) for ω = 1 to (− 1

3 , 1) for ω = 2/3. Hence, changing the param-
eter ω dramatically changes the behavior of the relaxed Jacobi for the high
frequency parts of the error. However, low frequency or smooth parts of the
error are inefficiently handled for any ω. Still, this is good news, because the
high frequency parts of the error are most problematic. A simple idea might
be to compute the solution on a coarser grid and use this as the initial guess.
Multigrid methods are generalizations of this idea.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1
Eigenvalues for the Jacobi method
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(c
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(π

 x
k)−
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Fig. 3. Eigenvalues of the Relaxed Jacobi iteration Matrix.

2.7 Exact and Inexact Block Jacobi

Another natural extension of the pointwise Jacobi algorithm expressed above
constitutes what we will call the block Jacobi method. This iteration arise
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when replacing the numbers aij , uj, and bj in (30) with the matrices Aij ,
and the vectors uj and bj , respectively. Consider the linear system

Au = b,

where

A =





A11 A12 · · · A1N

A21 A22

.
. . . . . . . . .

.
AN1 ANN




, u =





u1

.

.

.
uN




, b =





b1

.

.

.
bN




. (37)

Here, Aij are matrices, and xi and bi are vectors. The algorithm takes the
form,

un
i = A−1

ii (bi −
∑

j $=i

Aiju
n−1
j ). (38)

In order for this method to be applicable we have to assume that the block
matrices, Aii, are invertible.

As for the previous Jacobi variants, this iteration can be written in terms
of the Richardson iteration (3),

un = un−1 − D−1(Aun−1 − b),

where D contains the diagonal blocks matrices Aii. The iteration is conver-
gent if

0 < ‖D−1A‖ < 2.

Of course, Aii may be large blocks and in such cases we do not necessarily
want to invert Aii, but rather make an approximation of D−1, i.e.,

un = un−1 − D̂−1(Aun−1 − b),

The convergence is determined by ‖D̂−1A‖.
We will postpone the discussion of the merits of this algorithm. However,

notice that this framework covers both the optimal preconditioner for the
Bidomain model and the domain decomposition method of additive Schwarz
type.

2.8 Gauss-Seidel

Looking at the Jacobi iteration, we observe that when computing the un-
known un

i the unknowns un
j for j < i has already been computed. Moreover,

un
j should be ”closer” to the actual solution than un−1

j . Therefore, it seems
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natural to modify the Jacobi iteration to use the new values instead. This is
the Gauss-Seidel iteration,

un
i =

1
aii

(bi −
∑

j<i

aiju
n
j −

∑

j>i

aiju
n−1
j ). (39)

Let
A = D + U + L,

where D is the diagonal, U and L are the strictly upper and lower diagonal
parts of A, respectively. Then the Gauss-Seidel iteration can be written in
terms of the Richardson iteration (27),

un = un−1 − (D + L)−1(Aun−1 − b),

where B = (D + L)−1 and τ = 1.

2.9 Relaxed Gauss-Seidel

The Gauss-Seidel method can be relaxed in the same way as the Jacobi
method,

un
i = (1 − ω)un−1 + ω(

1
aii

(bi −
∑

j<i

aiju
n
j −

∑

j>i

aiju
n−1
j )). (40)

Written in terms of the Richardson iteration, we obtain

un = un−1 − ω(D + wL)−1(Aun−1 − b).

2.10 Symmetric Gauss-Seidel

The Gauss-Seidel method is not symmetric (unless A is a diagonal matrix).
However, symmetry is an important property for some solution algorithms
such as the Conjugate-Gradient method described later. If the matrix is sym-
metric, it is rather straightforward to derive a symmetric version of the Gauss-
Seidel method. The symmetric Gauss-Seidel simply consist of one standard
Gauss-Seidel sweep followed by an additional sweep using the unknowns num-
bered backwards.

un−1/2
i =

1
aii

(bi −
∑

j<i

aiju
n−1/2
j −

∑

j>i

aiju
n−1
j ), for i = 1, . . . n,

un
i =

1
aii

(bi −
∑

j>i

aiju
n
j −

∑

j<i

aiju
n−1/2
j ), for i = n, . . . 1.

Written in terms of the Richardson iteration,

un = un−1 − (D + L)−1D(D + U)−1(Aun−1 − b).
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2.11 Block Gauss-Seidel

The block version of Gauss-Seidel method is a straightforward extension of
the pointwise Gauss-Seidel. This is similar to the extension we did with block
Jacobi. The algorithm is as follows.

un
i = A−1

ii (bi −
∑

j<i

Aiju
n
j −

∑

j>i

Aiju
n−1
j ). (41)

A necessary condition is that Aii is invertible, which was also the case with
block Jacobi.

3 The Conjugate Gradient Method

So far we have considered classical iterative methods for solving linear systems
of the form

Au = f. (42)

The classical schemes are easily derived and their motivation is rather
simple. In 1952, Hestenes and Stiefel [14] broke this tradition and published
a completely different algorithm. Initially, they viewed their scheme as an
alternative to Gaussian elimination; i.e. they derived a direct method that
would, in exact arithmetics, give the exact solution in at most N iterations.
Here N is the number of unknowns in (42) and the matrix A is supposed
to be symmetric and positive definite. Later on, it was realized that the
approximate solution obtained after much less than N iterations was actually
quite good. Soon it became common to use the Conjugate Gradient (CG)
method of Hestenes and Stiefel as an iterative method rather than as a direct
method.

One of the most important ideas in numerical analysis is that of “best
approximation”. Given a large space of functions V and a subspace with
fewer functions VN ; how can you find the best approximations vN ∈ VN of
the “true” solution v ∈ V . This approach is the basis of the finite element
method and, as we shall see, the fundamental idea of the CG method as well.
In this text, we shall merely sketch the development of the method. For a
full story we refer the reader to e.g. Golub and vanLoan [12] or to Stoer and
Bulirsch [21].

3.1 The CG Algorithm

As mentioned above, the CG method seeks the best possible approximation in
a certain subspace. To this end, the method consists of two basic ingredients;
computing a proper subspace and computing the best approximation in this
subspace.

In the CG method, we use two inner products; the standard one
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(u, v) =
1
N

N∑

i=1

uivi, (43)

and the A-inner product

(u, v)A = (Au, v). (44)

Since A is symmetric and positive definite, (44) defines an inner product.
Similarly, we define the associated norms

‖u‖ = (u, u)1/2, (45)

and
‖u‖A = (Au, u)1/2. (46)

The algorithm computes the best solution measured in the A-norm. Fur-
thermore, we will derive a set of search vectors that are A-orthogonal, thus
spanning the subset in which we seek an approximate solution. Suppose the
subspace of RN is denoted by W , and let w be the best approximation of u
measured in the A-norm, i.e.

‖u − w‖A ≤ ‖u − v‖A, ∀ v ∈ W. (47)

Then it is generally known that

(u − w, v)A = 0, ∀ v ∈ W, (48)

i.e. the error is orthogonal to the subspace. This result is fundamental in the
derivation of the CG-method.

Let us now assume that we have already computed k search vectors

p0, p1, . . . , pk−1,

which are mutually A-orthogonal, i.e.

(pi, pj)A = 0 i *= j. (49)

Let
Wk = span{p0, . . . , pk−1}, (50)

and note that

dim(Wk) = k. (51)

We assume that

uk ∈ Wk, (52)

satisfies
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‖u − uk‖A ≤ ‖u − v‖A, ∀ v ∈ Wk, (53)

such that uk ∈ Wk is the best approximation of the exact solution u measured
in the A-norm. It is rather obvious that if Wk spans all of RN , then uk = u
so we will have the exact solution in at most N iterations.

Let us also define the residual

rk = f − Auk, (54)

which of course is zero if uk = u. The residual has a very interesting property
that can be derived from the best approximation property. It follows from
(48) and (53) that

(u − uk, v)A = 0, ∀ v ∈ Wk, (55)

By using the definition of the A-norm, we get

(A(u − uk), v) = 0, ∀ v ∈ Wk, (56)

and since Au = f , we have

(rk, v) = 0, ∀ v ∈ Wk. (57)

So rk is orthogonal to all the vectors in Wk, and in particular

(rk, pj) = 0, j = 0, 1, . . . , k − 1. (58)

We now want to step from iteration k to iteration k + 1, and in order
to do so, we need to increase the dimension of Wk = span{p0, . . . , pk−1}
and then compute the best approximation in the new and larger subspace.
In order to increase the dimension of Wk, we will apply the Gram-Schmidt
algorithm. This is an algorithm that computes an orthogonal basis based on
linearly independent vectors. Now, we already have k linearly independent,
and in fact also orthogonal, vectors. In order to apply the Gram-Schmidt
algorithm, we will need a vector that is linearly independent of all vectors
in Wk. Since we have already seen that rk orthogonal to all vectors in Wk

we can use this vector to increase the dimension to k + 1, and then use the
Gram-Schmidt orthogonalization process to generate an orthogonal basis.
Using this algorithm, we find that

pk = rk + βk−1pk−1, (59)

where

βk−1 = − (rk, pk−1)A

(pk−1, pk−1)A
. (60)

Now we have Wk+1 = span{p0, p1, . . . , pk} and we want to find the best
approximation uk+1 ∈ Wk+1. We seek uk+1 ∈ Wk+1 of the form
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uk+1 = uk + αkpk, (61)

and the task is to determine αk such that

‖u − uk+1‖A ≤ ‖u − v‖A, ∀ v ∈ Wk+1. (62)

Because of (48), we require that

(u − uk+1, v)A = 0, ∀ v ∈ Wk+1, (63)

such that, in particular, we have

(u − uk+1, pk)A = 0. (64)

Using (61), we have

αk =
(u − uk, pk)A

(pk, pk)A
. (65)

Here we notice that

(u − uk, pk)A = (A(u − uk), pk)A = (rk, pk)A,

such that

αk =
(rk, pk)A

(pk, pk)A
. (66)

By (61) we have

uk+1 = uk + αkpk, (67)

and the derivation is complete.
The CG-method can be formulated in many variants using the orthogonal-

ity properties discussed above. All these variants are mathematically equiv-
alent but may behave differently on a computer due to round-off issues. The
version we give here has been successfully applied in many practical compu-
tations.
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The Conjugate Gradient Algorithm
Let A ∈ RN,N , f ∈ RN ,u0 ∈ RN , and 0 < ε < 1 be given. The
matrix A is supposed to be symmetric and positive definite.
u = u0

r = f − Au
p = r
ρ0 = (r, r)
k = 0
While ρk/ρ0 > ε do

z = Ap (68)
γ = (p, z) (69)
α = ρk/γ (70)
u = u + αp (71)
r = r − αz (72)

ρk+1 = (r, r) (73)
β = ρk+1/ρk (74)
p = r + βp (75)
k = k + 1 (76)

end

The update of rk is worth noting. Recall that

rk = f − Auk, (77)

since, according to (67),

uk+1 = uk + αkpk, (78)

and we have

rk+1 = f − Auk+1

= f − A(uk + αkpk)
= f − Auk − αkApk

= rk − αkApk. (79)

Since we have already computed Apk (see (68)), we can avoid an extra
matrix-vector multiplication by using (79).

3.2 Convergence Theory

As mentioned above, the CG method is now considered as an iterative scheme
and it is important to study the convergence behavior of the method. It turns
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out that the convergence can be studied in terms of the condition number of
the matrix A in (42). Recall that

K = K(A) =
λmax

λmin
, (80)

where λmax and λmin are the largest and smallest eigenvalue of A respectively.
It is well known, see e.g. Knabner and Angermann [?], that the error after k
iterations with the CG method can be bounded as follows,

‖ek‖A

‖e0‖A
≤ 2

(√
K − 1√
K + 1

)k

, (81)

where the error is given by

ek = u − uk. (82)

We observe from (81) that if K is small (close to one), the convergence is
very fast, and if K is large the convergence may be very slow. As discussed
above, linear systems of the form (42) arising from the discretization of partial
difference equations are often poorly conditioned, i.e. K is very large.

Suppose K is large and we want to compute the number of iterations k
such that

‖ek‖A

‖e0‖A
≤ ε, (83)

for a given ε, 0 < ε < 1. Then, from (81) we need

k ≥ ln(ε/2)

ln
(√

K−1√
K+1

) (84)

iterations. Since K is large, we have
√

K − 1√
K + 1

≈ 1 − 1√
K

,

and since

ln(1 + x) = x + O(x2),

we have

ln

(√
K − 1√
K + 1

)
≈ −1/

√
K,

and thus

k ! ln(2/ε)
√

K. (85)
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This formula explains the importance of the condition number for the
convergence of the CG method. We will return to this issue several times
below. It is clear that if (85) is sharp estimate, then the number of iterations
is O(

√
K) and thus increases quite rapidly as the condition number increases.

3.3 Numerical Experiments

In this section we will present some numerical experiments using the CG
method. To this end, we consider the following two problems:

−∆u2 = f2 (x, y) ∈ Ω = [0, 1]2, u2 = 0 at ∂Ω, (86)

−∆u3 = f3 (x, y) ∈ Ω = [0, 1]3, u3 = 0 at ∂Ω. (87)

We use

f2 = exy, (88)
f3 = exyz, (89)

and discretize (86) and (87) using straightforward finite differences. In a
1D finite difference discretization we use n internal nodes leading to a grid
spacing of

h =
1

1 + n
. (90)

In 2D we use n2 internal nodes and n3 internal nodes in 3D. Based on the
PDEs above, this leads to linear systems of the form

A2u2 = g2, (91)
A3u3 = g3. (92)

It can be shown that the condition numbers of A2 and A3 are O(h−2),
see e.g. [?]. Since the number of iterations is given by (85), we have k =
O(

√
K) = O(h−1). In 2D, the number of nodes is N ≈ 1/h2 and in 3D, we

have N ≈ 1/h3, hence k2 ≈ c2N1/2 in 2D, and k3 ≈ c3N1/3 in 3D. Using
ε = 10−7, we have applied the CG-method to the systems (91) and (92). The
number of iterations are given in Table 3.3 and Table 3.3.

We observe from the tables that the number of iterations is about

k2 ≈ 3N1/2

in 2D and

k3 ≈ 3.5N1/3
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Table 3. The table shows the number of nodes (N), the number of iterations (k2),
and c2 = k2/N

1/2.

N k2 c2 = k2/N
1/2

10 404 287 2.81
40 804 579 2.87
161 604 1167 2.90
643 204 2361 2.94

2 566 404 4770 2.98

Table 4. The table shows the number of nodes (N), the number of iterations (k3),
and c3 = k3/N

1/3.

N k3 c3 = k3/N
1/3

1 728 34 2.83
10 648 69 3.14
74 088 138 3.29
551 368 278 3.39

4 251 528 558 3.44

in 3D. Since the amount of work in each iteration is O(N), we have that the
solution process requires O(N3/2) in 2D and O(N4/3) in 3D. The optimal
result would be O(N) and we will derive methods that are optimal in this
sense later in the text.

4 Multigrid

4.1 Idea

In this section we will first try to motivate multigrid methods with the in-
tuition derived from the classical iterations in the previous section, before
we present the polished and abstract framework. Readers interested in the
theory of multigrid methods can consult [4] and [13]. More practical introduc-
tions to multigrid methods are given in [6] and [24]. An overview of multigrid
methods and generalizations thereof can be found in [5] and the references
therein.

In the previous section we observed that both the standard and the
weighted Jacobi iterations had problems for certain eigenfunctions, but were
very good for others. The Jacobi method showed poor performance for eigen-
functions corresponding to either the larger or smaller eigenvalues, whereas
weighted Jacobi with ω = 2

3 was rather effective for all the higher frequen-
cies. We recall that the error iteration associated with the weighted Jacobi
method can be written

en = en−1 − ωD−1Aen−1. (93)
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Fig. 4. Eigenvalues of the Jacobi iteration Matrix.

Using the eigenfunction expansion of en and (93), we arrived at an estimate
for the error after n iterations, en, in terms of the eigenvalues for the weighted
Jacobi method in (33). We restate the eigenvalues here for convenience,

λk(ω) = 1 + ω(cos(kπh) − 1), k = 1, . . . , N. (94)

For the high frequencies this results in

max
k≥n

2

|λ(
2
3
)| ≤ 1

3
. (95)

However, the performance is bad for the smooth components. How can
the performance be improved ? A natural idea is to combine the strengths
of Jacobi with some other method. Earlier we suggested that a coarse grid
solution could be used as an initial guess. The initial error would then only
contain the high frequency components and the relaxation would be highly
efficient. In this section we will develop this idea further, and eventually end
up with the multigrid algorithm.

Lets assume that we have performed a number, m, of relaxed Jacobi
iterations. The error is then smooth and the continuing iterations barely alter
um. It is clear that we need another strategy. The first step is to observe that
instead of solving

Au = b.

We can solve
Aem = rm,

where
em = u − um,

and
rm = Aum − b.
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The solution u is then obtained as

u = um + em.

The multigrid idea is based on the observation that while u can be any
function, the error is smooth after a number of relaxations. The error can
therefore be well represented on a coarse grid. Moreover, the computations
on a coarse grid is of course cheaper than on a fine grid. To clarify this
idea, we again consider the 1D discretization of the Poisson problem. The
generalization is done afterwards.

In our 1D example it is easy to define a coarse grid. Let the fine grid be

Ωh = {xj = jh, j = 0, 1, . . . , N + 1}.

Then a coarser grid can be defined analogously,

ΩH = {xj = jH, j = 0, 1, . . . , M + 1}.

An obvious choice is H = 2h, which is assumed in the following for simplicity.
Hence, instead of solving

Aheh = rh,

we solve
AHeH = rH ,

because we know that the Jacobi iterations have removed the high frequency
error. Given the grid ΩH we are able to define the coarse grid matrix AH .
But a coarse grid representation of the residual on the fine grid, rh, is also
needed. This can be done by using a restriction operator such that

rH = IH
h rh.

This notation indicates that IH
h generates an approximation rH on the coarse

scale of the fine scale version represented by rh. A suitable choice, in this case,
is the weighted restriction operator defined by

uH
j = (IH

h uh)j =
1
4
(u2j−1 + 2u2j + u2j+1), j = 1, . . . , M.

With this restriction operator we are able to compute the coarse error

AeH = rH = IH
h rh.

Finally, it is necessary to represent the coarse error on the fine grid. A suitable
interpolation is

Ih
H = (IH

h )T ,

which, componentwise, reads

uh
2j = uH

j , j = 1, . . . , M,

uh
2j+1 =

1
2
(uH

j + uH
j+1) j = 0, . . . , M.
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4.2 Theoretical Framework

It is now time to generalize the ideas and present the more polished theoretical
framework of multigrid methods. Let Ω0 ⊂ Ω1 ⊂ . . . ⊂ ΩL be a nested
sequence of quasi-uniform grids, where ΩJ is the finest grid and Ω0 is the
coarsest. We assume that the coarsest grid is significantly coarser than the
finest, such that the cost of the solution of the coarse grid problem can
be neglected when compared to a smoothing operation on the finest grid.
Furthermore, let VJ be a finite element space on ΩJ consisting of piecewise
continuous polynomials of degree r, typically r is 1 or 2. Then V0 ⊂ V1 ⊂
. . . ⊂ VL ⊂ H1

0 . Notice that this assumption about nested grids and finite
element spaces is not essential, but that it simplifies the analysis significantly.

The next thing to notice is that the restriction and interpolation oper-
ators come for free when using a finite element discretization. The natural
restriction operator is the L2 projection, QJ : L2 → VJ , defined by

(QJf, N) = (f, N), ∀N ∈ VJ and f ∈ L2

where (·, ·) is the continuous L2 inner product defined by

(f, g) =
∫

Ω
fg ∂Ω.

This inner product is the natural extension of the discrete L2 inner product
in (7). The interpolation operator is implicitly defined because VJ−1 ⊂ VJ . In
other words, a basis function NJ−1

j on the coarse grid ΩJ−1 can be expressed
by a sum of basis functions {NJ

i } on the fine grid ΩJ ,

NJ−1
j =

∑

i

αiN
J
i .

The next thing to do is to define the linear systems on the different grids.
In the previous Chapter ?? we defined the weak formulation of a general
elliptic problem,

−∇ · (a(x)∇u(x)) + c(x)u(x) = f(x), in Ω, (96)
u = 0, on ∂Ω. (97)

where
inf
x∈Ω

a(x) > 0, inf
x∈Ω

c(x) ≥ 0,

and there exists a real number M such that

sup
x∈Ω

a(x) < M, sup
x∈Ω

c(x) < M.

We saw in Chapter ?? that the problem (96)-(97) could formally be written
as

Au = f,
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with f ∈ H−1 and A : H1
0 → H−1 was defined by the weak formulation of

(96)-(97),
(Au, v) = (a∇u,∇v) + (cu, v), ∀u, v ∈ H1

0 .

The solution u ∈ H1
0 and is unique.

We are now able to define the linear systems to be solved approximately
on the different grids,

AJuJ = fJ ,

where
fJ = QJf, AJ = QJA.

An explicit expression can be found. Let {NJ
j } be the finite element basis

functions that span VJ then

fj = (f, NJ
j ), AJ

ij = (ANJ
i , NJ

j ).

Finally, we need to specify sufficient conditions for the approximate solvers
(smoothers) on the different grids to ensure convergence. Let SJ denote a
smoother, for instance the weighted Jacobi method would correspond to SJ =
ωDJ , with DJ being the diagonal of AJ . As before these smoothers need to
be convergent, that is

ρ(SJAJ ) ≤ σ, (98)

where σ ⊂ (0, 2). The other condition basically says that the smoother has
to be close to A−1

J for the high frequency components. This can be stated as

(S−1
J v, v) ≤ α(AJv, v), ∀v ∈ (I − QJ−1)VJ , (99)

where α > 0. This condition is a generalization of the eigenvalue result for
weighted Jacobi (95).

Finally, we state the V-cycle multigrid algorithm. Notice that there are a
number of generalizations of this algorithm, e.g., W-cycle and full multigrid,
see e.g., [6] and [24].

The Multigrid V-cycle Algorithm

I: B1 = A−1
1

II: Bjg = v3 where
v0 = 0
v1 = v0 − Sj(Ajv0 − f)
v2 = v1 − Bj−1Qj−1(Ajv1 − f)
v3 = v2 − Sj(Ajv2 − f)
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4.3 Convergence Theory

In Section 2.3 we described how the efficiency of iterative methods can be
stated in terms of the convergence rate,

ρ = ‖I − τBA‖,

and,
‖en‖ ≤ ρ‖en−1‖.

For optimal algorithms ρ ≤ c < 1 independent of h and this leads to a
bounded number of iterations independent of h. In the following we set τ = 1
for simplicity.

We used the norm ‖ ·‖ for convenience, but in fact, any norm can be used,
see [13], Chapter 3. The most common norm in the convergence analysis of
multigrid methods (and domain decomposition methods) is the ‖ · ‖A-norm.
The A-norm of v is defined as,

‖v‖A = (Av, v)1/2,

and the corresponding A-norm of a matrix C is

‖C‖A = sup
v

(Cv, v)A

(v, v)A
.

With these norms the convergence rate is

ρA = ‖I − BA‖A,

and the error estimate is

‖en‖A ≤ ρA‖en−1‖A.

It is shown in [1] and [27] that given that the smoothers SJ satisfy the
assumptions (98) and (99), we have ρA < 1 independent of h. In fact,

ρA ≤ α

α + 2
.

As a rule of the thumb, the convergence rate ρA ≤ 1
10 in the case of a

discretization of the Poisson equation on a simple geometry.
Notice that there are many different ways to prove the optimality of multi-

grid, see for instance [4] and [13], and the references therein.

4.4 Experiments

We will now show an experiment with multigrid. Let the model problem be

−∆u = f, in Ω,

u = 0, on ∂Ω,
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where the solution is u = exy and Ω = [0, 1] × [0, 1]. The initial guess is a
highly oscillating random function. This random function is used to make
the stress test for multigrid as hard as possible. It should contain ”every
possible” error. We use ‖rk‖

‖r0‖ ≤ 10−8 as the stopping criterion. The number of
iterations needed to achieve convergence is shown in Table 4.4. The number
of iterations seems to be independent of h, as it should.

Table 5. The number of iterations, n, to achieve convergence with for a Poisson
problem with respect to the grid size h.

h 2−2 2−3 2−4 2−5 2−6 2−7

n 5 6 6 6 6 6

In Figure 5 the dramatic improvement of the solution during one V-cycle
is displayed. It should be clear to anyone that the combination of smoothing
and coarse grid correction is powerful.
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Fig. 5. The upper left picture shows the initial vector. It is a random vector that
should contain ”all possible” errors. In the upper right picture the solution after
one symmetric Gauss-Seidel sweep is displayed. It is clear that the high frequency
random behavior in the initial solution has been effectively removed. The picture
down to the left shows the solution after the coarse grid correction. The smooth
components of the solution have improved dramatically. In the last picture the
solution after the post smoothing is displayed. The solution is now very close to the
actual solution.

5 Domain Decomposition

Domain decomposition methods have become very popular, in particular dur-
ing the last two decades, due to the development of parallel computers. Many
researchers have worked on this subject and the result is an abstract and ma-
ture theoretical foundation, at the same level as multigrid methods. The idea
was introduced already in 1870 by Schwarz, who made an algorithm for com-
puting the solution on a compound domain Ω = Ω1 ∪ Ω2, by successively
solving similar problems on the simpler domains Ω1 and Ω2. Later, in par-
ticular from the 1980s and on, researchers discovered that the technique was
a powerful algorithm for the efficient solution of discretizations of various
PDEs, in particular on parallel computers. For a more detailed description
of domain decomposition methods we refer to [9] and [20].
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We start this section by reviewing the results from Schwarz’s early pa-
per [19], because it is a very good illustration of the method. Schwarz was
interested in finding the solution to the following Poisson problem4

−∆u = f, in Ω,

u = g, on ∂Ω,

where the domain Ω = Ω1 ∪ Ω2 is depictured in Figure 6.

ΩΩ1 2

Γ

Γ2

1

Fig. 6. Schwarz problem domain.

The solution of the Poisson problem on the simpler domains Ω1 and Ω2

was known. Schwarz’s powerful idea was to make an iteration that repeatedly
reuse the solutions in Ω1 and Ω2 to get the proper boundary conditions on Γ1

and Γ2, and thereby the solution in the compound domain Ω. The algorithm
can be summarized as follows. First, the solution in Ω1 is computed as the
solution of the following problem,

−∆un
1 = f, in Ω1,

un
1 = g, on ∂Ω1\Γ1,

un
1 = un−1

2 , on Γ1.

The unknown boundary condition on Γ1 is based on the previous solution in
the domain Ω2 or an initial guess. Once un

1 is computed, it is used on the
unknown boundary Γ2 such that un

2 can be computed by

−∆un
2 = f, in Ω2,

un
2 = g, on ∂Ω2\Γ2,

un
2 = un

1 , on Γ2.

4 Schwarz actually studied the Laplace equation, i.e., the Poisson problem with a
homogeneous right-hand side, f = 0. However, the algorithm works for any f .
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After the new solution, un
2 , is computed, the next iteration starts by the

computation of un+1
1 with new boundary conditions based on un

2 and the
iteration continues. Schwarz was able to prove that this iteration converges
to the actual solution in Ω.

We will now generalize the alternating Schwarz algorithm to handle many
subdomains and make it suitable for parallel computers. However, we will not
go into the parallelization here. This is a large field of its own and is covered
in Chapter ??. Instead we will focus on the mathematical properties of the
algorithm. Let Ωh be a triangulation of Ω and furthermore let Ω1, . . . , Ωp be
an overlapping subdivision of Ωh, where p will typically equal the number of
processors on the parallel computer. The subdomains are usually constructed
as follows. Let Ω̂1, . . . , Ω̂p be a partition of non-overlapping domains such
that Ω = Ω̂1 ∪ . . . ∪ Ω̂p and Ω̂i ∩ Ω̂j = 0 for i *= j. Each of the subdomains
Ω̂i is then extended with a distance βH such that the subdomains become
overlapping. We will come back to the parameters β and H later.

A convenient assumption is that the subdomains are nested in the sense
that Ωi ⊂ Ωh. This assumption is not necessary, but simplifies the exposition.
Inherited from the nestedness of the grids there exists a restriction matrix
Ri : Ωh → Ωi, such that

Ri(xj) = 1, if xj ∈ Ωi, (100)
Ri(xj) = 0, elsewhere. (101)

Here, xj are the vertices (or nodal points) in the grid Ωh. The corresponding
interpolation operator is simply the transposed of the restriction matrix, RT

i .
Finally, the subdomain matrices are defined by

Ai = RiART
i .

With the above definitions of Ai, Ri and RT
i we can now state the additive

Schwarz algorithm.

The Additive Schwarz Algorithm

for i = 1, . . . , p:
un+1 = un − τRT

i A−1
i Ri(Aun − b)

The additive Schwarz algorithm can be expressed as a preconditioner, Ba,
for the Richardson iteration (27), as follows

Ba =
p∑

i=1

RT
i A−1

i Ri. (102)

Notice also that the previously computed un is used in each step. This means
that the algorithm is parallel by nature. Furthermore, if A is symmetric then
so is Ba. It may be necessary to adjustment τ to ensure convergence.
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The multiplicative Schwarz algorithm is very similar to the additive Schwarz
algorithm. The only difference is that the most recently computed values of
u are always used. Also, multiplicative Schwarz is convergent with τ = 1 and
therefore the τ parameter is usually avoided.

The Multiplicative Schwarz Algorithm

for i = 1, . . . , p:
un+ i

p = un+ i−1
p − RT

i A−1
i Ri(Aun+ i−1

p − b)

The multiplicative Schwarz can also be represented in terms of a precondi-
tioned Richardson iteration. We have the identity

I − BmA = (I − RT
p A−1

p Rp) · · · (I − RT
1 A−1

1 R1), (103)

where Bm is the preconditioner in the Richardson iteration (27).
The multiplicative Schwarz algorithm is generally more efficient than the

additive Schwarz algorithm on a scalar computer. However, multiplicative
Schwarz is a sequential algorithm and is not suitable for parallel computers.
In its present shape, the algorithm is not symmetric. But a symmetric version
can be made by one standard multiplicative Schwarz iteration followed by an
additional iteration with the domains numbered backwards. These algorithms
are generalizations of block Jacobi (additive Schwarz) and block Gauss-Seidel
(multiplicative Schwarz) to overlapping blocks.

There is one major problem with the algorithms as stated above. The
efficiency of the algorithms depends on the number of subdomains p. In fact,
the efficiency deteriorates quite rapidly as p increases. A cheap, but efficient
solution to the problem of the p dependency is to introduce a coarse grid ΩH ,
with characteristic grid size H . This grid can be very coarse (in contrast to
multigrid methods). We refer to the matrix on the coarse grid as AH and the
restriction operator is RH . Notice that the restriction operator is not on the
form (100)-(101), but is instead made similar to the restriction operator used
for multigrid methods.

The above definition of the Schwarz algorithms can easily employ coarse
grid correction. Instead of the previous numbering where Ω1, . . . , Ωp is a over-
lapping partition of Ωh, we number the overlapping domains as Ω2, . . . , Ωp′

,
where p′ = p+1. In addition, the coarse grid is used, let Ω1 = ΩH . With this
numbering of the domains and the corresponding matrices Ai and Ri, the
above algorithms extend directly to the case with a coarse grid, given that p
is replaced with p′.

The following results are known for the additive and multiplicative Schwarz
preconditioners. For the additive Schwarz preconditioner with a coarse grid
correction, Ba, the condition number of BaA is independent of h. In fact,

K(BaA) ≤ C(1 + β−1).
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Notice that this does not mean that the additive Schwarz algorithm with
coarse grid correction is necessarily convergent. However, τ can be chosen
such that the convergence rate,

ρA = ‖I − τBaA‖A < 1,

independently of h and H . The choice of τ is dealt with in more detail later
in Section 6.

On the other hand the multiplicative Schwarz method with coarse grid
correction is convergent and the convergence rate, ρA < 1, is independent of
h and H , where

ρA = ‖I − BmA‖A.

The proof can be found in e.g, [9] and [20]. Without a coarse grid correc-
tion the convergence rate typically deteriorates as O(H−2).

There are also non-overlapping domain decomposition algorithms where
the underlying domains are not overlapping. Moreover, the domains may not
even be motivated geometrically. We will not go into these algorithms here,
instead we refer to e.g., [9] and [20].

6 Preconditioning Revisited

6.1 Idea

We have now introduced the classical iterations, the multigrid method, do-
main decomposition and the Conjugate Gradient method as separate meth-
ods. It is now time to glue them together to a framework suitable for handling
the equations of the Bidomain model. The gluing concept is preconditioning.

As before, we want to solve the linear system,

Au = b. (104)

We have seen earlier that the efficiency of both the Richardson and the Con-
jugate Gradient method depends on the condition number of A, which was
typically of order h−2. The idea of preconditioning is simply to multiply (104)
with a matrix or operator B to obtain an equivalent system,

BAu = Bb, (105)

where B is usually called the preconditioner. The system (105) has the same
solution as (104) provided that B has full rank5. The hope is then that (105)
is easier to solve than (104). The preconditioner B can be any matrix or
operator that in some sense resembles A−1. For instance, it may be a sweep
with the Jacobi or the Gauss-Seidel iterations or it may be based on an
5 A matrix has full rank if it is invertible.
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approximate factorization of A. What is crucial is that B should be a good
approximation of A−1 and also cheap in storage and evaluation.

Earlier we considered optimal solution algorithms, and we will therefore
describe optimal preconditioners. First, we need the concept of spectral equiv-
alence, which describes what a ”good” approximation of A−1 is.

6.2 Spectral Equivalence

Notice that A and B are families of matrices with respect to the triangulations
Ωh, where h approaches zero in the limit. It is therefore common to let A
and B have the subscript h, Ah and Bh.

The two operators or matrices that are assumed to be symmetric and
positive definite6, A−1

h and Bh, are spectrally equivalent (independent of h)
if there exist constants c1 and c2, independent of h such that

c1(A−1
h v, v) ≤ (Bhv, v) ≤ c2(A−1

h v, v), ∀v. (106)

Alternatively, we may express this property as

c1(Ahv, v) ≤ (AhBhAhv, v) ≤ c2(Ahv, v), ∀v. (107)

It is known that the condition number of BhAh is bounded by the constants
c1 and c2,

K(BhAh) ≤ c2

c1
. (108)

It is common to denote spectral equivalence of Ah and B−1
h as Ah ∼ B−1

h .
With the definition of spectral equivalence we can now state how a well
designed preconditioner should be:

– Bh should be spectrally equivalent to A−1
h ,

– the evaluation of Bh on a vector v, Bhv, should cost O(N) operations,
– the storage of Bh should be similar to the storage of Ah, O(N) floating

point numbers.

In the following we will see that an optimal preconditioner leads to an
optimal solution algorithm, both in the case of the Richardson and the Con-
jugate Gradient methods.

6.3 The Richardson Iteration Re-Revisited

We can now derive what the spectral equivalence of B and A−1 means in the
context of the preconditioned Richardson iteration. We remember from (28)
that the error at the n iteration, en, could be stated in terms of the error at
the previous iteration, en−1,

en = (I − τBA)en−1. (109)
6 If Ah and Bh are symmetric and positive definite then so are A−1

h and B−1
h .
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The convergence rate in the A-norm is

ρA = ‖I − τBA‖A, (110)

and the error behavior could be estimated as

‖en‖A ≤ ρA‖en−1‖A.

Because BA is symmetric with respect to the A inner product, ρA can be
stated in terms of the eigenvalues of BA, µi,

ρA = ‖I − τBA‖A = sup
µi

|1 − τµi|.

Hence, ρA is a linear polynomial in µi and its maximum is obtained at the
extreme values µi,

|1 − τµ0| or |1 − τµN |,
where µ0 and µN are the smallest and largest eigenvalues, respectively. We
choose τ as the minimizer of |1 − τµi|. The minimum is obtained when

1 − τµ0 = τµN + 1.

which makes
τ =

2
µ0 + µN

the optimal choice. With this choice of τ , ρA is

ρA = 1 − τµ0 = 1 − 2µ0

µ0 + µN
=

µN − µ0

µN + µ0
=

K − 1
K + 1

, (111)

and we have the corresponding error estimate,

‖en‖A ≤ (
K − 1
K + 1

)n‖e0‖A.

Hence, when A and B−1 are spectrally equivalent, the condition number K
is independent of h, and therefore the convergence rate, ρA, is independent
of h.

6.4 Preconditioned Conjugate Gradient Method

In this section we will extend the Conjugate Gradient method with a pre-
conditioner. This is nearly always done in practice, at least when CG is used
to compute the numerical solution of PDE problems. First, observe that BA
does not need to be symmetric even if A and B are. Symmetry is required to
ensure convergence of the Conjugate Gradient method, as we saw in Section
3. However, the algorithm can be stated in any inner product. The inner
product of choice when using a preconditioner is (·, ·)B−1 defined as

(u, v)B−1 = (B−1u, v).
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The preconditioner B is positive definite and symmetric, which means that
B−1 also is positive definite and symmetric. Consequently, also B−1 defines
an inner product. Moreover, BA is obviously symmetric in the B−1 inner
product, because

(BAu, v)B−1 = (Au, v) = (u, Av) = (u, BAv)B−1 .

Still, we do not want to form neither B−1 nor BA. In fact, when using either
multigrid or domain decomposition as preconditioner, the only available ac-
tion is the evaluation on a vector, Bv. Fortunately, the Conjugate Gradient
method applied to BA in the B−1 inner product can be stated similar to the
Conjugate Gradient algorithm at page 22. The only difference is the use of
an additional vector and the evaluation of B.

The Preconditioned Conjugate Gradient Algorithm
Let A ∈ RN,N , B : RN → RN , f ∈ RN ,u0 ∈ RN , and 0 < ε < 1
be given. The matrix A and the preconditioner B are supposed to
be symmetric and positive definite.
u = u0

r = f − Au
s = Br
p = s
ρ0 = (s, r)
k = 0
While ρk/ρ0 > ε do

z = Ap (112)
t = Bz (113)
γ = (p, z) (114)
α = ρk/γ (115)
u = u + αp (116)
r = r − αz (117)
s = s − αt (118)

ρk+1 = (s, r) (119)
β = ρk+1/ρk (120)
p = s + βp (121)
k = k + 1 (122)

end
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6.5 Convergence Analysis

The convergence analysis in Section 3 extends directly to the case with a
preconditioner, but the condition number is K = K(BA) instead of K(A),

‖en‖A ≤ (
√

K − 1√
K + 1

)n‖e0‖A.

In the case where B ∼ A−1, K ≤ c2
c1

by (108) and is bounded independently
of h. This is always an improvement over the preconditioned Richardson
iteration, √

K − 1√
K + 1

=
K − 1

K + 2
√

K + 1
<

K − 1
K + 1

.

However, if K is small, then the improvement is not large. This is the case
for Poisson type equations, because the multigrid methods or domain de-
composition methods are highly efficient. In fact, in the case of multigrid
preconditioning, an convergence rate of about 1

10 should be expected. Using
the relation (111) the condition number can be estimated to K ≈ 1.2, which
makes

√
K ≈ 1.1. Moreover, each iteration with the Conjugate Gradient

method is slightly heavier than an Richardson iteration and it is therefore
not much to gain by accelerating an efficient multigrid method with the
Conjugate Gradient method. However, if robustness is an issue, then the pre-
conditioned Conjugate Gradient method should be considered. This will be
exemplified in the next section.

6.6 Variable Coefficients

In this section we will consider the case of elliptic equations with variable
coefficients. The reason for this study is that the electrical conductivity in
the heart and body vary spatially. In fact, the ratio between the largest
and the smallest conductivities may be as large as 100, which is the ratio
between blood and bone. Here, we will investigate how such variations affect
the multigrid performance. The model problem is

−∇ · (a∇u) = f, in Ω, (123)
u = 0, on ∂Ω, (124)

where a(x) is a matrix that describes the electrical conductivity of the media.
Let the corresponding linear system be

Au = b.

Both multigrid and domain decomposition have problems removing the
error associated with the jumps in a. In fact, multigrid may even diverge,
depending on the jump and the geometry of a.
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On the other hand, the preconditioned Conjugate Gradient method al-
ways converge, given that the matrix is positive definite and symmetric, which
it is in this application. However, the efficiency of the Conjugate Gradient
method depends on the condition number. We know from the sections 4 and
5 that efficient multigrid and domain decomposition algorithms can be made
for discretizations of the Poisson problem

−∆u = f, in Ω, (125)
u = 0, on ∂Ω. (126)

The corresponding linear system is denoted

Cu = c.

In this case we know that it is possible to construct a preconditioners, B,
which is spectrally equivalent with the inverse,

c0(Bv, v) ≤ (C−1v, v) ≤ c1(Bv, v), ∀v.

Furthermore, C and A are spectrally equivalent, because

amin

∫

Ω
∇u∇v dx ≤

∫

Ω
a∇u∇v dx ≤ amax

∫

Ω
∇u∇v dx.

Finally, because A ∼ C ∼ B−1, we end up with the following estimate on the
condition number,

K(BA) =
k1

k0

c1

c0
.

Table 6. The number of iteration with respect to a and h

h\a 1 102

102 - -
103 - -
104 - -
105 - -
106 - -

7 The Monodomain Model

Recalling the equation for the Monodomain model introduced in Chapter ??,

ut −∇ · (a∇u) = f(u), in Ω, t > 0,

u(0) = u0, in Ω, t = 0,

u(x) = 0, on ∂Ω,
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where u is the transmebrane potential, a is a scaled conductivity, and f(u)
is a nonlinear function. One way to solve the equation is to split it in two
parts,

ut = ∇ · (a∇u), in Ω, t > 0, (127)

and
ut = f(u), in Ω, t > 0, (128)

and assign suitable boundary and initial conditions to these equations.
The main reason for performing the splitting is that efficient solution

algorithms exist for both (127) and (128). Solution algorithms for (128) are
described in Chapter ??. Here, we will focus on (127) and consider both
multigrid and domain decomposition.

Using either implicit Euler or Crank-Nicholson for the time discretization
and either FDM or FEM in space, we need to solve the following linear system
at each time step,

(I − ∆tA)uk = uk−1. (129)

Notice, that this linear system corresponds to the discretization of a reaction-
diffusion equation,

u − ε∆u = f, (130)

where ε << 1. One of the characteristics of this equation is that boundary
layers may be present as ε approaches zero. This causes the solution u to
be less regular than for standard elliptic equations, which again causes a
deterioration of the approximation on coarse grids. The quality of the coarse
grid correction is important for both multigrid and domain decomposition,
but should in the case of (130) be expected to decrease. This is not the
case for the system (129), due to the particular right-hand side, which is the
solution at the previous time step, uk−1.

In the following sections we will describe multigrid and domain decom-
position preconditioners that are independent of both h and ∆t, in the sense
that,

c0(Bu, u) ≤ ((I − ∆tA)−1u, u) ≤ c1(Bu, u), ∀u,

where c0 and c1 are independent of h and ∆t.
Finally, we remark that the difference between two time steps decreases

as ∆t → 0,
‖uk − uk−1‖ ≤ C∆t.

Therefore, the solution from the previous time step, k − 1, provides a very
good start vector at the next time step, k. With this start vector the error
reduction required by the linear solvers is only ∼ ∆t. Hence, when using
iterative methods, the linear system at each time step becomes cheaper to
solve as ∆t decreases.
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7.1 Multigrid

The multigrid methods considered in Section 4 extend to the problem (129)
c.f. [3], [16] and [23] and are independent of both ∆t and h. This is described
in the following.

As earlier, we have a sequence of nested quasi-uniform grids, Ω0 ⊂ Ω1 ⊂
. . . ⊂ ΩL. For each grid the corresponding linear system is

(I − ∆tAJ )uk
J = uk−1

J , J = 0, . . . , L. (131)

The smoothers, restriction and interpolation operators are defined as in Sec-
tion 4.

In Section 4 we saw that multigrid is an efficient algorithm for solving the
following equation

cu −∇ · (a∇u) = f, (132)

where c and a are bounded below and above. However, we did not mention
the case where a → 0. This is the case here. Let us start by considering
the situation when a = 0, (In this case the solution has already been found
at the previous time step and there is no need to solve a linear system.
Look aside from this point.) The solution of (132) reduces to solving a linear
system where the matrix is a mass matrix. This can be done optimally with
standard classical iterations, because the mass matrix has a condition number
independent of h and is diagonally dominant.

Hence, in the limit case of a = 0, the coarse grid correction is not needed.
This is the general case with this equation. The performance of the smoothers
improves as ∆t decreases. In fact, it has been shown in [16] that the improved
smoothing balance the loss of the approximation on the coarse grid, such that
multigrid is an optimal method independently of ∆t, even for the harder case
of the reaction-diffusion equation. In Table 7.1 we see that the performance
improves as ∆t decreases for (129).

Table 7. The number of iterations with respect to ∆t and h.

h\∆t 1 102 104 106

102 - - - -
103 - - - -
104 - - - -
105 - - - -
106 - - - -
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7.2 Domain Decomposition

The domain decomposition methods considered in Section 5 extend to the
problem (129) c.f. [7], [8] and [9] and are independent of both ∆t and h. This
is described in the following.

As earlier in Section 5, the domain is divided into p overlapping subdo-
mains, Ωh = Ω1

h∪. . .∪Ωp
h, with an additional coarse grid ΩH . The restriction

and interpolation operators, Ri and RT
i , can be derived from the geometrical

relation between the subdomain Ωi
h and Ωh, with no reference to the matrix

to be solved. Therefore, these operators can be used also in this application.
This also applies to the restriction and interpolation operators for the coarse
grid. Therefore, the subdomain matrix is constructed as,

(I − ∆tA)i = Ri(I − ∆tA)RT
i .

With these subdomain matrices, the Schwarz algorithms in Section 5 can be
used directly.

In the previous section, where we considered the multigrid methods, we
noticed that the smoothers improved as ∆t → 0. Also, for domain decompo-
sition methods, the error appears to be become more local as ∆t decreases.
In fact, if ∆t ≤ CH2 then the coarse grid solver is not necessary, see [7] and
[8].

8 The Bidomain Model

In the previous sections we have seen that it is possible to make optimal
preconditioners for both of the matrices A and I −∆tA, where A was similar
to a discrete Laplacian. However, the Bidomain model contains a system of
PDEs, where each component is either A or I −∆tA. It is not easy to extend
the theoretical framework developed for A and I−∆tA to this model problem
directly, but this is a possibility. This is not what we will do here. Instead,
we will show that these components can be reused in the powerful concept
of (block) preconditioning, to give an order optimal preconditioner.

To clarify the description we restate the equations that was derived in
Chapter ??,

vt = ∇ · (Mi∇v) + ∇ · (Mi∇u),
0 = ∇ · (Mi∇v) + ∇ · ((Mi + Me)∇u).

In Chapter ??, these equations were discretized by the finite element method
in space and a Crank-Nicholson scheme in time, such that we arrive at the
following system of algebraic equations,

Ivn +
∆t

2
Aiv

n +
∆t

2
Aiu

n = Ivn−1 − ∆t

2
Aiv

n−1 − ∆t

2
Aiu

n−1,

∆t

2
Aiv

n +
∆t

2
Ai+eu

n = −∆t

2
Aiv

n−1 − ∆t

2
Ai+eu

n−1.
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Recall that the matrices Ai and Ai+m are discretizations of the above differ-
ential operators, i.e.,

Ai = (∇ · Mi∇)h,

Ai+e = (∇ · Mi+e∇)h,

and I is the mass matrix in the finite element method. Later we will also
need the discrete Laplacian,

A0 = ∆h.

The right-hand sides are not of particular importance when considering
preconditioners. In fact, we construct the preconditioners such that they han-
dle any right-hand side. That is, letting bn−1 and cn−1 to be the respective
right-hand sides,

(
bn−1

cn−1

)
=
(

Ivn−1 − ∆t
2 Aivn−1 − ∆t

2 Aiun−1

−∆t
2 Aivn−1 − ∆t

2 Ai+eun−1

)
,

then we can write (133) as
(

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)(
vn

un

)
=
(

bn−1

cn−1

)
. (133)

The matrix in (133) is symmetric and positive definite. This makes the Con-
jugate Gradient method an appropriate iterative solver, when combined with
a suitable preconditioner. In the following we will describe a block precon-
ditioner, where the blocks are constructed by preconditioners for Ai and
I + ∆t

2 Ai. These have been described earlier in this chapter.
Block preconditioners have been considered before, in particular for the

Navier-Stokes equations in e.g., [10], [11], [18], and [25]. More general block
preconditioners can be found in [2] and [15]. Applications to the Bidomain
model are described in [17] and [22].

We will now describe an optimal preconditioner for the Bidomain model.
The matrix in (133) is

T =
(

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)
. (134)

In the following we will show that T is spectrally equivalent to the inverse of
the block Jacobi preconditioner. Let

S =
(

I + ∆t
2 A0 0
0 ∆t

2 A0

)
. (135)

The exact Jacobi preconditioner will then be S−1, but of course inverting S is
too costly. However, in Section 4, Section 5 and Section 7 optimal precondi-
tioners for A0 and I+ ∆t

2 A0 were described. Therefore, we know that an order
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optimal preconditioner for S can be made. This is indeed the main motivation
behind constructing the preconditioner this form. Let this preconditioner be
R, defined as

R =

( ̂(I + ∆t
2 A0)−1 0
0 ̂(∆t

2 A0)−1

)
. (136)

Spectral equivalence is assosiative, in the sense that if A, B, and C are
three matrices and A ∼ B and B ∼ C, then A ∼ C. We have that R−1 ∼ S.
Therefore, it remains to show that S ∼ T , and this would imply that R−1 ∼
T . Then, we can deduce that the condition number of the preconditioned
system is bounded7,

K(R T ) ≤ c. (137)

where c is independent of h and ∆t.
Hence, the concept of block preconditioning allow us to build an optimal

preconditioner by reusing standard algorithms based on multigrid and domain
decomposition for linear scalar PDEs that are either elliptic or parabolic.
These methods have been studied extensively in the literature.

The last piece of the puzzle is to prove that S and T are spectrally equivalent,
S ∼ T , c.f. Section 6.2. This is done in the rest of this section.

Assumptions
We assume that there exists constants c0 and c1, independent of h and ∆t,
such that

c0(A0v, v) ≤ (Aαv, v) ≤ c1(A0v, v), (138)

for α = i, e.
The assumption simply state that the matrix generated by the Laplace

operator is spectrally equivalent to the matrices generated by the variable
coefficient problems.

Notice that, since

(Ai+eu, u) = (Aiu, u) + (Aeu, u),

we have from (138) that

2c0(A0v, v) ≤ (Ai+eu, u) ≤ 2c1(A0v, v). (139)

The proof is split in two parts, the upper and the lower bound. We start with
the upper bound.

7 Notice that we assume that S, T and R−1 are spectrally equivalent independent
of h and ∆t, c.f. Section 6.2.
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Upper bound:
Let

W =
(

v
u

)
.

We start by proving that

(TW, W ) ≤ c(SW, W ), ∀W,

for a suitable choice of c (which is independent of h and ∆t). First we compute
a more direct expression for (TW, W ),

(TW, W ) =
((

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)(
v
u

)
,

(
v
u

))

=
((

(I + ∆t
2 Ai)v + ∆t

2 Aiu, ∆t
2 Aiv + ∆t

2 Ai+eu
)
,

(
v
u

))

= ((I +
∆t

2
Ai)v, v) + ∆t(Aiv, u) +

∆t

2
(Ai+eu, u).

The corresponding expression for the preconditioner is

(SW, W ) =
((

I + ∆t
2 A0 0
0 ∆t

2 A0

)(
v
u

)
,

(
v
u

))

=
((

(I + ∆t
2 A0)v, ∆t

2 A0u
)(v

u

))

= ((I +
∆t

2
A0)v, v) +

∆t

2
(A0u, u).

By using (138) and (139), we get

(TW, W ) ≤ ((I +
∆t

2
Ai)v, v) +

∆t

2
(Ai+eu, u) + ∆t(Aiv, u)

+
∆t

2
(Ai(v − u), (v − u))

= ((I +
∆t

2
Ai)v, v) +

∆t

2
(Ai+eu, u) + ∆t(Aiv, u)

+
∆t

2
(Aiv, v) +

∆t

2
(Aiu, u) − ∆t(Aiv, u)

= ((I + ∆tAi)v, v) + ∆t(Aiu, u) +
∆t

2
(Aeu, u)

≤ c1((I + ∆tA0)v, v) + c1∆t(A0u, u) + c1
∆t

2
(A0u, u)

≤ 3c1

{
((I +

∆t

2
A0)v, v) +

∆t

2
(A0u, u)

}
.

Hence
(TW, W ) ≤ 3c1(SW, W ). (140)
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Lower bound

(TW, W ) = ((I +
∆t

2
Ai)v, v) + ∆t(Aiv, u) +

∆t

2
(Ai+eu, u)

= (Iv, v) +
∆t

2
(Ai(v + u), v + u) +

∆t

2
(Aeu, u)

≥ c0(v, v) +
∆tc0

2
(A0(v + u), v + u) +

∆tc0

2
(A0u, u)

≥ c0(v, v) +
∆tc0

2
(A0(v + u), v + u) +

∆tc0

2
(A0u, u)

−∆tc0

2
(A0(εu +

1
ε
v), εu +

1
ε
v).

where ε > 0 is to be determined. Here

(A0(εu +
1
ε
v), εu +

1
ε
v) = ε2(A0u, u) +

1
ε2

(A0v, v) + 2(A0v, u),

so

(TW, W ) ≥ c0

{
(v, v) +

∆t

2
(A0v, v) +

∆t

2
(A0u, u)

+∆t(A0v, u) +
∆t

2
(A0u, u) − ∆t

2
ε2(A0u, u)

− ∆t

2ε2
(A0v, v) − ∆t(A0v, u)

}

= c0

{
(v, v) +

∆t

2
(1 − 1

ε2
)(A0v, v) +

∆t

2
(2 − ε2)(A0u, u)

}
.

By picking ε2 = 3/2, we have 1 − 1
ε2 = 1/3 and 2 − ε2 = 1/2, and then

(TW, W ) ≥ c0

{
(v, v) +

∆t

6
(A0v, v) +

∆t

4
(A0u, u)

}

≥ c0

3

{
((I +

∆t

2
A0)v, v) +

∆t

2
(A0u, u)

}

=
c0

3
(SW, W ). (141)

Summarizing the results from (140) and (141), we have

c0

3
(SW, W ) ≤ (TW, W ) ≤ 3c1(SW, W ).

Hence, T and S are spectrally equivalent. This imply that the condition
number of S−1T is bounded. In fact,

κ(S−1T ) = 9
c1

c0
.
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