
FEniCS Course
Lecture 23: Biot’s equations of
poroelasticity

Contributors
Kent-Andre Mardal

1 / 17



Biot’s equations of poroelasticity
The Biot’s equations of poroelasticity describe the
fluid–structure interaction between a porous elastic media
saturated by a pressurized fluid

The equations have many forms, one common form is the
displacement-pressure formulation:

ρutt −∇ · 2µε(u)−∇λ∇ · uI + α∇p = f

s
∂p

∂t
+ α
∇ · u
∂t
−∇ · (K∇p) = g

Here
• u and p are the uknown displacement and pressure
• ρ is the density
• µ and λ are Lamé’s elastic parameters
• s is the storage coefficent
• K is the hydralic conductivity (permeability / viscosity)

The challenge is to find schemes that are robust to (large)
variations in particular in λ and K.
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Biot’s equations of poroelasticity

The equations are a coupling of linear elasticity and porous
Darcy flow. It has a number of intesting and challenging
features:

1 Second order derivative in time ρutt

2 First order derivatives in time s∂p∂t and α∇·u∂t
3 Three elliptic terms ∇ · 2µε(u), ∇λ∇ · uI, and ∇ · (K∇p)
4 ∇λ∇ · uI is associated with locking of the displacement as

we learned in linear elasticity

5 For ∇ · (K∇p), K may be very small or contain large
discontinuities resulting in pressure oscillations

Hence, this is a challenging numerical problem which is
currently heavily investigated
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Biot’s equations of poroelasticity

In the quasi-static formulation we ignore the term ρutt. This
can be done as long as the application in focus does not involve
shear or compression waves. The equation can the be written:

∇ · 2µε(u)−∇λ∇ · uI +∇p = f

s
∂p

∂t
+ α
∇ · u
∂t
−∇ · (K∇p) = g
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Variational formulation

∇ · 2µε(u)−∇λ∇ · uI +∇p = f (1)

s
∂p

∂t
+ α
∇ · u
∂t
−∇ · (K∇p) = g (2)

We obtain a variational formulation by multiplying the
momentum equation, (1), by v and integrating by parts∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
λ∇ · u∇ · v dx−

∫
Ω
p∇ · v dx =

∫
Ω
fv dx

Similarly, multiplying the continuity equation, (2), by q and
integrating by parts we obtain and multiplying by -1 to obtain
symmetry we get

−
∫

Ω
s
∂p

∂t
q dx−

∫
Ω
α
∇ · u
∂t

q dx−
∫

Ω
K∇p · ∇q dx =

∫
Ω
gq dx
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Variational formulation, cont’d

The equations∫
Ω

2µε(u) : ε(v) dx+

∫
Ω
λ∇ · u∇ · v dx−

∫
Ω
p∇ · v dx =

∫
Ω
fv dx

−
∫

Ω
s
∂p

∂t
q dx−

∫
Ω
α
∇ · u
∂t

q dx−
∫

Ω
K∇p · ∇q dx =

∫
Ω
gq dx

with an implicit Euler discretization (where we have multiplied
the continuity equation with ∆t) reads: The equations∫

Ω
2µε(un) : ε(v) + λ∇ · un∇ · v − pn∇ · v dx =

∫
Ω
fv dx∫

Ω
−spnq − α∇ · unq −∆tK∇pn · ∇q dx =

∫
Ω
. . . dx

6 / 17



Variational formulation

This equation may be written as a saddle point problem[
A B
BT −C

] [
u
p

]
=

[
f
g

]
(3)

Where, if Ni are the basis functions for the displacement and Li
are the basis functions of the pressure

• Aij =
∫

Ω 2µε(Ni) : ε(Nj) dx+ λ∇ ·Ni∇ ·Nj dx

• Bij =
∫

Ω∇ ·NiLj dx

• Cij =
∫

Ω sLiLj dx+K∇Li · ∇Lj dx

Notice that the C matrix (as A) is positive, but in (3) there is a
’-’ sign in front of C. As for the previously mentioned mixed
form of elasticity (with ”solid pressure”), this negative term is
stabilizing the saddle point problem.
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Comparison with Stokes
We remember Stokes problem This equation may be written as
a saddle point problem[

−∇2 −∇
∇· 0

] [
u
p

]
=

[
f
0

]
In our case A and C are different. This equation may be
written as a saddle point problem[

−∇ · 2µε−∇λ∇· −∇
∇· −s+∇ ·K∇

] [
u
p

]
=

[
f
g

]
• We already addressed the difference between ∇2 and ∇ · ε
• We therefore replace ∇· ε with ∇2 to simplify the discussion

• We known that large λ is associated with locking of
displacement

• Pressure oscillations are associated with K small or with
large jumps
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An attempt to avoid displacement locking:
introduce solid pressure

We remember that for linear elasticity (when λ� µ) we
introduced the solid pressure. The displacement formulation of
linear elasticity was:

−µ∇2u−∇λ∇ · u = f

introducing the solid pressure as pS = λ∇ · u we obtain

−µ∇2u−∇pS = f

∇ · u− 1

λ
pS = g

This formulation did not suffer from locking when using Brezzi
stable elements such as, e.g., Taylor–Hood.
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Biot with solid pressure

Using the same trick we obtain an alternative formulation of
the Biot’s equations with two pressures (solid pS and fluid pF ) −∇2 −∇ −∇

∇· − 1
λ 0

∇· 0 −s+∇ ·K∇

 u
pS
pF

 =

 f
0
g


Is this formulation ok?
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Biot with solid pressure

Using the same trick we obtain an alternative formulation of
the Biot’s equations with two pressures (solid pS and fluid pF ) −∇2 −∇ −∇

∇· − 1
λ 0

∇· 0 −s+∇ ·K∇

 u
pS
pF

 =

 f
0
g


As λ→∞ and K, s→ 0 we obtain −∇2 −∇ −∇

∇· 0 0
∇· 0 0

 u
pS
pF

 =

 f
0
g


This formulation is not stable in the parameters λ, s and K!
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Biot with Total pressure

Let us instead introduce the total pressure: pT = pS + pF . The
problem then reads −∇2 −∇ 0

∇· − 1
λ

1
λ

0 1
λ −s− 1

λ +∇ ·K∇

 u
pS
pF

 =

 f
0
g


This formulation is perfectly stable in the parameters λ, s and
K!

Standard Stokes elements can be used!

Lee JJ, Mardal KA, Winther R. Parameter-robust discretization and
preconditioning of Biot’s consolidation model. SIAM Journal on Scientific
Computing. 2017 Jan 3;39(1):A1-24.

12 / 17



The Galerkin method and oscillations

Consider the following simplified problem in 1D

s
∂p

∂t
−∇ · (K∇p) = f

Given a small K, does a usual finite element scheme yield a
good approximation?
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The Galerkin method and oscillations

An implicit Euler leads to

spn −∆t∇ · (K∇pn) = pn−1 + ∆tf

Given a small K, does a usual finite element scheme yield a
good approximation?
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The Galerkin method and oscillations, cont’d

from dolfin import *

mesh = UnitIntervalMesh(10)

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

K = Constant(0.00001)

a = u*v*dx + K*inner(grad(u), grad(v))*dx

L = Constant(0)*v*dx

def boundary(x): return near(x[0], 0) or

near(x[0], 1)

bc = DirichletBC(V, Constant(1), boundary)

u = Function(V)

solve(a == L, u, bc)
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The Galerkin method and oscillations, cont’d
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Is the best approximation the best
approximation?

• The finite element method actually find the best
approximation (in the inner product defined by our weak
form)

• Clearly, we saw un-physical oscillations

• This illustrates that the best approximation may be
treacherous

• To guarantee oscillation-free solutions we would need
monotom schemes or schemes that conserve special
properties

• In this case it is natural to employ more advanced (mixed)
schemes for the Darcy problem
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