
FEniCS Course
Lecture 22: Linear elasticity

Contributors
Kent-Andre Mardal

1 / 15

Linear elasticity: continuous equations

• Ω0 ∈ R3 that is being deformed under a load

• Ω is the deformed Ω0

• Let x ∈ Ω correspond to X ∈ Ω0

• Then the deformation is u = x−X
• The stress tensor σ is a symmetric 3× 3 tensor which is a

function u

• Hooke’s law states:

σ = 2µε(u) + λ tr(ε(u))δ

• In equilibrium (i.e. no accelration terms), Newton’s second
law states:

div σ = f, in Ω

σ · n = g, on ∂Ω

• f and g are body and surface forces

• n is the outward normal vector
2 / 15

Linear elasticity: continuous equations, cont’d
• Hooke’s law states:

σ = 2µε(u) + λ tr(ε(u))δ

• ε(u) is the strain tensor or the symmetric gradient:

ε(u) =
1

2
(∇u+ (∇u)T)

• µ and λ are the Lame constants
• tr is the trace operator (the sum of the diagonal matrix

entries), u is the displacement, and

δ =

 1 0 0
0 1 0
0 0 1

From Newton’s second law and Hooke’s law we arrive
directly at the equation of linear elasticity:

− 2µ(∇ · ε(u))− λ∇(∇ · u) = f (1)

3 / 15

Linear elasticity: continuous equations, cont’d

The equation of linear elasticity:

− 2µ(∇ · ε(u))− λ∇(∇ · u) = 0 (2)

The equation is elliptic, but there are crucial differences
between this equation and a standard elliptic equation like
−∆u = f . These differences often cause problems in a
numerical setting. To explain the numerical issues we will here
consider the three operators:

1 ∆ = ∇ · ∇ = div grad

2 ∇ · ε = ∇ · (1
2(∇+ (∇T))

3 ∇ · tr ε = ∇∇· = grad div

Item 2 leads to the study of rigid motions while item 3 leads to
the study of locking

4 / 15

Weak form and finite element method

For the moment we consider the pure Neumann problem
Find u ∈ H1 such that

a(u, v) = f(v), ∀v ∈ H1

Here
a(u, v) = µ(ε(u), ε(v)) + λ(∇ · u,∇ · v)

f(v) = (f, v) +

∫
∂Ω
gvds

From the weak form we obtain a linear system Au = f by using
the finite element method, where the stiffness matrix involved
in linear elasticity is obtained as

Aij = a(Ni, Nj)

where {Ni} are the finite element basis functions

5 / 15

Rigid motions

Rigid motions consists of translations and rotations

Mathematically, we have the following analytical expressions for
rigid motions:

RM2D =

[
a0

a1

]
+

[
0 a2

−a2 0

] [
−y
x

]
(3)

RM3D =

 a0

a1

a2

+

 0 a3 a4

−a3 0 a5

−a4 −a5 0

 x
y
z

 (4)

In other words 3 degrees of freedom (dofs), i.e., a0, a1, a2, in 2D
and 6 dofs in 3D.

6 / 15

The strain of a rigid motion

The strain of a rigid motion is zero. CHECK! Consequences:

• Let r be a rigid motion

• then ε(r) = 0 and therefore
• ∇ · ε(r) = 0
• tr ε(r) = 0
• ∇ · tr ε(r) = 0

Our equation

−2µ(∇ · ε(u))− λ∇(∇ · u) = f

is singular since if u solves the equation then so does u+ r
because

−2µ(∇ · ε(r))− λ∇(∇ · r) = 0

The same applies to Neumann conditions. Therefore the pure
Neumann problem is the hardest!

7 / 15

Ways to remove the singularity

There are several ways to remove the singularity of the elasticity
stiffness matrix A in the case of a pure Neumann problem:

• Pin-point the displacement in selected points (6 degrees of
freedooms must be removed)

• Penalize rigid motions

• Orthogonalize solution and input data with respect rigid
motions and use iterative solvers capable of ignoring the
kernel

• Use the method of Lagrange multipliers to deal with the
rigid motions

The first three methods here often require tuning and care. We
will therefore not go through them in detail. The last method is
the easiest and cleanest from a mathematical point of view, but
the elasticity problem then changes from an elliptic problem to
a saddle-point problem

8 / 15

Removing the rigid motions with the method of
Lagrange multipliers

Find u ∈ H1 and r ∈ RM such that

a(u, v) + b(r, v) = f(v), ∀v ∈ H1 (5)

b(s, u) = 0, ∀s ∈ RM (6)

Here,

a(u, v) = µ(ε(u), ε(v)) + λ(∇ · u,∇ · v) (7)

b(r, v) = (r, v) (8)

f(v) = (f, v) +

∫
∂Ω
gvds (9)

9 / 15

Code

(complete code found in the lecture notes)

V = VectorFunctionSpace(mesh , "Lagrange", 1)

R = FunctionSpace(mesh , ’R’, 0)

M = MixedFunctionSpace([R]*6)

W = MixedFunctionSpace([V, M])

u, rs = TrialFunctions(W)

v, ss = TestFunctions(W)

Establish a basis for the nullspace of RM

e0 = Constant ((1, 0, 0))

e1 = Constant ((0, 1, 0))

e2 = Constant ((0, 0, 1))

e3 = Expression ((’-x[1]’, ’x[0]’, ’0’))

e4 = Expression ((’-x[2]’, ’0’, ’x[0]’))

e5 = Expression ((’0’, ’-x[2]’, ’x[1]’))

basis_vectors = [e0 , e1 , e2 , e3 , e4 , e5]

10 / 15

Code, cont’d

e0 = Constant ((1, 0, 0))

e1 = Constant ((0, 1, 0))

e2 = Constant ((0, 0, 1))

e3 = Expression ((’-x[1]’, ’x[0]’, ’0’))

e4 = Expression ((’-x[2]’, ’0’, ’x[0]’))

e5 = Expression ((’0’, ’-x[2]’, ’x[1]’))

basis_vectors = [e0 , e1 , e2 , e3 , e4 , e5]

a = 2*mu*inner(epsilon(u),epsilon(v))*dx +

lambda_*inner(div(u),div(v))*dx

Lagrange multipliers contrib to a

for i, e in enumerate(basis_vectors):

r = rs[i]

s = ss[i]

a += r*inner(v, e)*dx + s*inner(u, e)*dx

11 / 15

Shear vs compression
The equation of linear elasticity:

− 2µ(∇ · ε(u))− λ∇(∇ · u) = 0. (10)

• the Lamé parameter λ represents how easily the material
compressed.

• often λ� µ

• physically this means that it is a lot easier to twist (cause
shear) than to compress the material

• incompressible liquids are extreme examples that easily
deform but are never compressed

• simple numerical schemes do not distinguish between
compression and shearing

• if λ� µ standard schemes underestimate the deformation

• the phenomen is called locking
12 / 15

A mixed form linear elasticy to avoid locking

Let us introduce an artifical uknown ”the solid pressure”

p = λ∇ · u

The equation of linear elasticity,

−2µ(∇ · ε(u))− λ∇(∇ · u) = f

can then be written as

− 2µ(∇ · ε(u))−∇p = f

∇ · u− 1

λ
p = 0

This is just a re-write, we have done nothing wrong! But we
would like to stress that the ”solid pressure” is not a physical
pressure in the normal sense

13 / 15

A mixed form linear elasticy to avoid locking

The strong form:

−2µ(∇ · ε(u))−∇p = f (11)

∇ · u− 1

λ
p = 0 (12)

The weak form: Find u ∈ H1 and p ∈ L2 such that

µ(ε(u), ε(v)) + (p,∇ · v) = f(v), ∀v ∈ H1

(∇ · u, q)− 1

λ
(p, q) = 0, ∀q ∈ L2

This looks like the Stokes problem we looked into earlier! In
fact the term c(p, q) is non-harmful in this setting as it is a
negative term. It even stabilize the system

Normal Stokes elements can be used here and we will optain
optimal convergence rates

14 / 15

Exercise: check the convergence of a known
scheme

We had the error estimate:

‖u− uh‖1 + ‖p− ph‖0 6 Chk‖u‖k+1 +Dhl+1‖p‖l+1

Check if this is correct by manufacturing a right-hand side (and
bc) from a known solution. Assume that u = ∇× sin(πxy) and
compute the right-hand side as f = −2µ(∇ · ε(u))− λ∇(∇ · u).
The ∇× operator is defined as (− ∂

∂y ,
∂
∂x). Compute numerical

solutions uh and refinements of the unit square with various λ
and check it the error depends on λ.

15 / 15

