
FEniCS Course
Lecture 9: Incompressible Navier–Stokes

Contributors
Kent-Andre Mardal

1 / 38



The incompressible Navier–Stokes equations

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u+ f in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

u = gD on ΓD × (0, T ]

µ
∂u

∂n
− pn = tN on ΓN × (0, T ]

u(·, 0) = u0 in Ω

• u : Ω→ Rd is the unknown fluid velocity

• p : Ω→ R is the unknown pressure

• ρ is the fluid density

• µ is the fluid density

• f is a given body force per unit volume

• gD is a given boundary velocity (Dirichlet conditions)

• tN is a given boundary traction (Neumann conditions)

• u0 is a given initial velocity
2 / 38



The equations are a mix of various equations
and are associated with a number of numerical
problems!

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u+ f

∇ · u = 0

• An elliptic term: µ∇2u

• A parabolic term: ρ∂u∂t − µ∇
2u

• A convection-diffusion term: ρu · ∇u− µ∇2u

• A Stokes problem:−µ∇2u+∇p = f ;∇ · u = 0

• A hyperbolic term: ρ(∂u∂t + u · ∇u)

3 / 38



What techniques should we use?

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u+ f

∇ · u = 0

• µ∇2u: use continuous elements, discontinous require care

• ρ∂u∂t − µ∇
2u: use L− stable schemes

• ρu · ∇u− µ∇2u: if µ is small then stabilize

• −µ∇2u+∇p = f ;∇ · u = 0: use elements of higher order

for u of than p

• ρ(∂u∂t + u · ∇u): use A− (not L−) stable schemes,

discontinous elements!
4 / 38



There is a jungle of solution methods
• For time-dependent flow simulations in 3D, tricks are

needed for efficiency!

• We need to discretize in both time and space
• First we consider methods where we:

• Discretize in time
• Do some tricks involving splitting the unknowns
• Discretize in space

Second we consider methods where we:
• Discretize in space
• Discretize in time
• Attempt to do some tricks

The first approach here is the most efficient, but is associated
with problematic boundary conditions and boundary layers, as
we will see

The second approach is the most mathematically correct
approach, but currently these schemes are typically less efficient
than the first approach

5 / 38



Suggested readings

• These notes build on ”Langtangen HP, Mardal KA,
Winther R. Numerical methods for incompressible viscous
flow. Advances in Water Resources. 2002 Dec
31;25(8):1125-46”

• Implementation in FEniCS: ”Valen-Sendstad K, Logg A,
Mardal KA, Narayanan H, Mortensen M. A comparison of
finite element schemes for the incompressible Navier–Stokes
equations. In: Automated Solution of Differential
Equations by the Finite Element Method 2012 (pp.
399-420). Springer Berlin Heidelberg”

• More comprehensive material: Gresho PM, Sani RL.
Incompressible flow and the finite element method, two
volume book.

6 / 38



The famous Poiseuille flow

7 / 38



Poiseuille flow with P2 − P1 elements

Figure: Illustration of Poiseuille flow in 2D as computed with
P2 − P1 elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. Both velocity and pressure
are correct up to round-off error.

8 / 38



Poiseuille flow with P1 − P1 elements

Figure: Illustration of Poiseuille flow in 2D as computed with
P1 − P1 elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. The velocity is correct but
the pressure is not. The P1 − P1 discretization violates the inf-sup
condition.

9 / 38



Efficiency and Accuracy for Channel flow, 2D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Channel

0 100000 200000 300000 400000 500000 600000
0

5000

10000

15000

20000

25000

30000

C
P
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Very different behaviour of the different solvers. The methods
we discuss here are closely related to IPCS and GRPC.

10 / 38



Explicit scheme, discretize time before space

The first equation:

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u+ ρf

Here ν = µ/ρ. When using a explicit Euler becomes

un+1 = un + ∆t(−un · ∇un − 1

ρ
∇pn + ν∇2un + fn)

Two main problems:

• No updated for the pressure (pn+1 does not show up
anywhere)

• No reason ∇ · un+1 should be zero

11 / 38



Derivation of project schemes

Lets say that our computed un+1 is a tentative guess, u∗

u∗ = un + ∆t(−un · ∇un − 1

ρ
∇pn + ν∇2un + fn)

Then the real un+1 should satisfy

un+1 = un + ∆t(−un · ∇un − 1

ρ
∇pn+1 + ν∇2un + fn)

In otherwords, subtracting the first from the second equation
we obtain

un+1 − u∗ = −∆t

ρ
∇(pn+1 − pn)

12 / 38



Derivation of project schemes, cont’d
let

uc = un+1 − u∗

and
φ = (pn+1 − pn)

then

uc − ∆t

ρ
∇φ = 0 (1)

Further, since
∇ · un+1 = 0

we obtain
∇ · uc = −∇ · u∗ (2)

Inserting (1) into (2) we obtain

−∆t

ρ
∇2φ = −∇ · u∗

We note that

un+1 = u∗ − uc = u∗ − ∆t

ρ
∇φ

13 / 38



Derivation of project schemes, cont’d

Putting it all together we have 4 easy steps:

1 Compute the tentative velocity

u∗ = un + ∆t(−un · ∇un − 1

ρ
∇pn + ν∆un + fn)

2 Solve a Poisson problem for the pressure update

−∇2φ = − ρ

∆t
∇ · u∗

3 Update velocity

un+1 = u∗ − ∆t

ρ
∇φ

4 Update pressure
pn+1 = pn + φ

14 / 38



Derivation of project schemes, cont’d

• We developed a scheme involving only a Poisson equation
and explicit updates!

• We skipped details concerning the boundary conditions, we
will look into that later

• This method of thinking, where we first construct a
tentative velocity and then modify to account for the
divergence constraint and update the pressure is a general
strategy!

• We now turn to implicit methods, but remember that this
explicit scheme is very easy to implement on parallel
computers

15 / 38



An implicit projection scheme
A tentative guess, involving an explicit pressure

u∗ −∆t((−u∗ · ∇u∗)− 1

ρ
∇pn + ν∇2u∗) = un + ∆tfn+1

This results in a nonlinear problem which is seldom used. Let
us therefore linearize to obtain

u∗ −∆t((−un · ∇u∗)− 1

ρ
∇pn + ν∇2u∗) = un + ∆tfn+1 (3)

and what we really want is slightly different

un+1−∆t((−un · ∇un+1)− 1

ρ
∇pn+1 + ν∇2un+1) = un + ∆tfn+1

(4)
Letting

un+1 = u∗ + uc

and subtracting (4) from (3) we obtain a more complicated
expression

16 / 38



An implicit projection scheme, cont’d

Let us, to simplify notation, introduce a convection-diffusion
operator s:

s(uc) = ∆t(−un · ∇uc + ν∇2uc)

Then the velocity correction step can be written as

uc − s(uc) +
∆t

ρ
∇φ = 0

∇ · uc = −∇ · u∗

What has been gained?

17 / 38



An implicit projection scheme, cont’d
Let us, to simplify notation, introduce a convection-diffusion
operator s:

s(uc) = ∆t(−un · ∇uc + ν∇2uc)

Then the velocity correction step can be written as

uc − s(uc) +
∆t

ρ
∇φ = 0

∇ · uc = −∇ · u∗

Nothing has been gained!
This problem is just as hard as the original equations!
However, we remark that the s(uc) term is a first-order term in
time.
Hence, we may ignore this term and still obtain a first order
approximation. We obtain:

uc +
∆t

ρ
∇φ = 0

∇ · uc = −∇ · u∗
18 / 38



An implicit projection scheme, cont’d

As for the explicit scheme, the equation

uc +
∆t

ρ
∇φ = 0

∇ · uc = −∇ · u∗

may be written as

−∇2φ = − ρ

∆t
∇ · u∗

19 / 38



An implicit projection scheme, cont’d

• We have arrived at two sub-problems that are possible to
solve efficiently and accurately with current methods

• The scheme is first order, second order schemes have been
claimed but (as far as I know) there is always some
assumptions that are not always explicitly stated

• We will not go into details on these assumptions (details
are in the paper of Langtangen et. al.

• There are issues with this scheme, regarding the boundary
conditions

• Lets first summarize the scheme, which has many names,
but we call it incremental pressure correction scheme
(IPCS)

20 / 38



An implicit projection scheme, cont’d

Putting it all together we have 4 steps:

1 Compute the tentative velocity

u∗ − s(u∗) +
∆t

ρ
∇pn = fn+1

2 Solve a Poisson problem for the pressure update

−∇2φ = − ρ

∆t
∇ · u∗

3 Update velocity

un+1 = u∗ − ∆t

ρ
∇φ

4 Update pressure
pn+1 = pn + φ

21 / 38



Boundary conditions and Splitting/Projection
schemes

• Splitting/Projection schemes ”always” introduce trouble
near the boundaries

• Navier-Stokes (in 3D) requires 3 conditions in every point
at the boundary

• IPCS (and all other projection schemes) requires 4
conditions at the boundary (3 for the tentative velocity, 1
for the Poisson equation)

• We remark that Neumann conditions (for Navier-Stokes
equations) are often refered to as pressure conditions, but
the Neumann condition involve both velocity and pressure,
µ∂u∂n − pn = tN
• Usually, from a physics point of view, the pressure

dominates

22 / 38



Boundary conditions cont’d
We may derive boundary conditions for φ in two ways:

• From the scheme:

un+1 = u∗ − ∆t

ρ
∇φ

Since un+1 and u∗ have the same boundary conditions, we
obtain homogenous Neumann conditions for φ, i.e.,

∇φ · n =
ρ

∆t
(un+1 − u∗) · n = 0

• From the Navier-Stokes equations we have that :

∇pn = −ρ(
∂un

∂t
+ un · ∇un) + µ∇2un + f

Since φ = pn+1 − pn and pn+1 6= pn we obtain a
non-homogenous condition.

In conclusion: We arrive at two different conditions which both
seem perfectly reasonable. The difference is first order.

23 / 38



Boundary conditions cont’d
Let us then use homogenous Neumann conditions. What
happens with the velocity when using these conditions?

We have the velocity update

un+1 = u∗ − ∆t

ρ
∇φ

since we use homogenous Neumann for φ, ∂φ
∂n = 0 and

un+1 · n = u∗ · n

and the normal component of un+1 is correct since u∗ has the
right boundary conditions

However, the tangential component of ∇φ is in general
non-zero. Therefore, un+1 · t will not be correct, since

un+1 · t = u∗ · t− ∆t

ρ
∇φ · t

24 / 38



Summary, projection schemes

• Projection schemes like IPCS are the most efficient on the
market today for transient flows

• The schemes do not require special mixed elements and
have for this reason been prefered

• There are issues with boundary layers, errors etc that you
need to be aware of

• In many applications, the main interest is what happens on
the boundary, if so be careful

• In the scheme, we first compute a tentative velocity, then
project this velocity onto the space of divergence free
functions

• Is the velocity divergence free after the projection step?

25 / 38



Exercise

• Implement a IPCS scheme to solve the Poiseuille flow
problem (in 2D).

• Validate against the Channel flow test (page 407) in the
FEniCS book

• Is the velocity divergence free?

• Is there a difference between P2-P1 elements and P1-P1
elements?

26 / 38



Discretization in space before time
A weak form of

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u+ f in Ω× (0, T ] (5)

∇ · u = 0 in Ω× (0, T ] (6)

is obtained by multiply the momentum equation, (5), by a test
function v and integrate by parts:∫

Ω
ρ(
∂u

∂t
+u·∇u)·v dx+

∫
Ω
−p∇·v+µ∇u : ∇v dx =

∫
Ω
f ·v dx+

∫
Γ
N

tN ·v ds

Short-hand notation: 〈·, ·〉 is L2-inner product

〈ρ∂u
∂t
, v〉+ 〈ρu · ∇u, v〉− 〈p,∇ · v〉+ 〈∇u,∇v〉 = 〈f, v〉+ 〈tN , v〉ΓN

Multiply the continuity equation, (6), by a test function q and
obtain

〈∇ · u, q〉 = 0
27 / 38



Discretization in space before time, written in
terms of matrices and vectors

We may write the discrete system as a system of
differential-algebraic equations (DAEs):

M
∂u

∂t
+N(u)u+Au+Bp = f

BTu = 0

Here, if Ni are the basis functions of the velocity and Lj are the
basis functions of the pressure the

• M is the mass matrix, Mij = 〈ρNi, Nj〉
• A is the stiffness matrix, Aij = 〈µ∇Ni,∇Nj〉
• N is the advection matrix, Nij = 〈ρu · ∇Ni, Nj〉
• B is the discrete gradient matrix, Bij = 〈Ni,∇Lj〉
• B is the discrete divergence matrix, BT

ij = 〈∇ ·Ni, Lj〉

28 / 38



Discretization in space before time, cont’d

The DAE-system:

M
∂u

∂t
+N(u)u+Au+Bp = f

BTu = 0

is terrible! It is

• non-linear

• non-symmetric

• indefinite

Efficienct algorithms for solving this system is still and open
question. You may get multilevel, domain decomposition
methods to work but it is hard and application-dependent

29 / 38



Discretization in space before time, cont’d

• When we did discretization in time before space we derived
a scheme consisting of computing a tenative velocity and
then a projection step.

• The scheme had two disadvantages: it was first order and
there were errors associated with the boundaries

• Both of these disadvantages can in principle be removed by
the technique described in the following, but currently at
the expense of efficiency

30 / 38



An algebraic splitting scheme
Let us as before first consider an explicit scheme

Mun+1 = Mun −∆t(N(un)un +Aun +Bpn − fn)

As before, we have no way of updating pn+1 and the divergence
constraint BTun+1 = 0 is not satisifed

Therefore, we follow the previous procedure of computing a
tentative guess

Mu∗ = Mun −∆t(N(un)un +Aun +Bpn − fn) (7)

whereas un+1 should satisfy

Mun+1 = Mun −∆t(N(un)un +Aun +Bpn+1 − fn) (8)

Subtracting (7) from (8) we obtain

M(un+1 − u∗) = −∆tB(pn+1 − pn)

31 / 38



An algebraic splitting scheme
In addition to

M(un+1 − u∗) = −∆tB(pn+1 − pn) (9)

using previous notation with uc and φ where we have

un+1 = u∗ + uc

and
φ = pn+1 − pn

Since
BTun+1 = 0

we must have that
BTuc = −BTu∗ (10)

and insering (9) into (10) we obtain

BTM−1Bφ = − 1

∆t
BTu∗

32 / 38



Summary of explicit algebraic splitting scheme

The scheme consists of 4 steps

1 Compute a tentative velocity

Mu∗ = Mun −∆t(N(un)un +Aun +Bpn − fn)

2 Solve an equation for φ

BTM−1Bφ = − 1

∆t
BTu∗

3 Compute velocity update

un+1 = u∗ −∆tM−1Bφ

4 Compute pressure update

pn+1 = pn + φ

33 / 38



Difference between previous projection scheme
and the current algebraic scheme

Previously, we solved the following equation for φ

∇2φ = − 1

∆t
∇ · u∗

now the equation reads:

BTM−1Bφ = − 1

∆t
BTu∗

How do these two equations compare?

34 / 38



Difference between previous projection scheme
and the current algebraic scheme

Previously, we solved the following equation for φ

∇2φ = − 1

∆t
∇ · u∗

now the equation reads:

BTM−1Bφ = − 1

∆t
BTu∗

• BT is a discrete divergence

• B is a discrete gradient

• M (and its inverse) is a discrete identity operator

Hence the two equations seem very similar. An important
difference is however that ∇2 requires a set of boundary
conditions whereas BTM−1B have boundary conditions built in.

35 / 38



An implicit algebraic splitting scheme
The previous scheme is straightforward to generalize into an
implicit scheme

1 Compute a tentative velocity

Mu∗ + ∆t(N(un)u∗ +Au∗ +Bpn) = Mun + ∆tfn+1

2 Solve an equation for φ

BT (M + ∆t(N(un) +A))−1Bφ = − 1

∆t
BTu∗

3 Compute velocity update

un+1 = u∗ −∆t(M + ∆t(N(un) +A))−1Bφ

4 Compute pressure update

pn+1 = pn + φ

36 / 38



The advantages and challenges with the implicit
algebraic splitting scheme

The implicit splitting scheme requires us to solve

BT (M + ∆t(N(un) +A))−1B

This matrix is usually called the pressure Schur complement

Currently there are no robust and efficient way of solving this
even though there are many solution algorithms that work in
special cases

And advantage was that there is no need for artificial boundary
conditions

Another advantage is that the previous scheme may be ran
several times for one time step to obtain a scheme that is more
than first order in time (this is in fact utilized in the more
method Generalized Richardson iteration for the pressure Schur
complement (GRPC) which does precisely this - see the
background material)

37 / 38



Efficiency and Accuracy for Channel flow, 2D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Channel

0 100000 200000 300000 400000 500000 600000
0

5000

10000

15000

20000

25000

30000

C
P
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Very different behaviour of the different solvers. The methods
we discuss here are closely related to IPCS and GRPC.

38 / 38


