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The Stokes equations

−∆u+∇p = f in Ω Momentum equation

∇ · u = 0 in Ω Continuity equation

u = gD on ∂ΩD

∂u

∂n
− pn = gN on ∂ΩN

• u is the fluid velocity and p is the pressure

• f is a given body force per unit volume

• gD is a given boundary flow

• gN is a given function for the natural boundary condition
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Variational problem
Multiply the momentum equation by a test function v and
integrate by parts:∫

Ω
∇u : ∇v dx−

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx+

∫
∂ΩN

gN · v ds

Short-hand notation:

〈∇u,∇v〉︸ ︷︷ ︸
a(u,v)

−〈p,∇ · v〉︸ ︷︷ ︸
b(v,p)

= 〈f, v〉+ 〈gN , v〉∂ΩN︸ ︷︷ ︸
L(v)

Multiply the continuity equation by a test function q:

±〈∇ · u, q〉︸ ︷︷ ︸
b(u,q)

= 0

Definitions of a(·, ·) and b(·, ·) are meaningful if u ∈ H1(Ω) and
p ∈ L2(Ω)
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Saddle point formulation of the Stokes problem
The Stokes problem is an example of a saddle point problem:
Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V̂ × Q̂

a(u, v) + b(v, p) = L(v)

b(u, q) = 0

Sum up: A(u, p; v, q) := a(u, v) + b(v, p) + b(u, q) = L(v)
Mixed spaces:

V = [H1
gD,ΓD

(Ω)]d V̂ = [H1
0,ΓD

(Ω)]d

Q = L2(Ω) Q̂ = L2(Ω)

The inf-sup condition

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
> C

is critical for the unique solvability of the saddle point problem
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Discrete variational problem

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ V̂h × Q̂h

Ah(uh, ph; vh, qh) := ah(uh, vh) + bh(vh, ph) + bh(uh, qh) = Lh(vh)

A stable mixed element Vh ×Qh ⊂ V ×Q should satisfy a
uniform inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

bh(vh, qh)

‖vh‖V ‖qh‖Q
> cb

with cb independent of the mesh Th!

⇒ The right “mixture” of elements is critical for stability and
convergence!
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The famous Poiseuille flow
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Poiseuille flow with P2 − P1 elements

Figure: Illustration of Poiseuille flow in 2D as computed with
P2 − P1 elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. Both velocity and pressure
are correct up to round-off error.
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Poiseuille flow with P1 − P1 elements

Figure: Illustration of Poiseuille flow in 2D as computed with
P1 − P1 elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. The velocity is correct but
the pressure is not. The P1 − P1 discretization violates the inf-sup
condition.
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Unstable and stable Stokes elements

Unstable elements

Stable elements

Taylor-Hood elements: Pk+1/Pk, Qk+1/Qk for k > 1
Mini-element: Pb

1/P1
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The Stokes problem is a saddle point problem

Saddle point problem

Given bilinear forms and linear forms

• a(·, ·) : V × V → R
• b(·, ·) : V ×Q→ R
• L(·) : V → R

Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V̂ × Q̂

a(u, v) + b(v, p) = L(v)

b(u, q) = 0 (1)

Operator formulation

Define operators (Riesz representation theorem)

• 〈Aw, v〉V ′,V = a(w, v) ∀ (w, v) ∈ V × V
• 〈Bv, q〉Q′,Q = b(v, q) ∀ (v, q) ∈ V ×Q

Au+B>p = L(v)

Bu = 0

10 / 1



Existence, uniqueness and stability: The
continuous case

• Continuity of A and B

a(w, v) 6 Ca‖w‖V ‖v‖V ∀ (w, v) ∈ V × V
b(v, q) 6 Cb‖v‖V ‖q‖Q ∀ (v, q) ∈ V ×Q

• Coercivity of A on kerB:

ca‖v‖V 6 a(v, v) ∀ v ∈ kerB

• Inf-sup condition:

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
> cb

• Compatibility condition for g

Then there exists a unique (u, p) ∈ V ×Q solving (SPP), satisfying

‖u‖V 6
1

ca
‖f‖V ′

(
+
ca + Ca

cb
‖g‖Q′

)
‖p‖Q′ 6

1

cb

(
(1 +

Ca

ca
)‖f‖V ′ +

Ca(ca + Ca)

cacb
‖g‖Q′

)
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Existence, uniqueness and stability: The discrete
case

• Continuity of Ah and Bh

a(wh, vh) 6 Ca‖wh‖V ‖vh‖V ∀ (wh, vh) ∈ Vh × Vh
b(vh, qh) 6 Cb‖vh‖V ‖qh‖Q ∀ (vh, qh) ∈ Vh ×Qh

• Coercivity of Ah on kerBh:

ca‖vh‖V 6 a(vh, vh) ∀ vh ∈ kerB

• Inf-sup condition: There is a mesh-independent constant cb s.t.

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
> cb

• Compatibility condition for g

Then there exists a unique (uh, ph) ∈ Vh ×Qh solving (SPP),
satisfying

‖uh‖V 6
1

ca
‖f‖V ′

h

(
+
ca + Ca

cb
‖g‖Q′

h

)
‖ph‖Q′

h
6

1

cb

(
(1 +

Ca

ca
)‖f‖V ′

h
+
Ca(ca + Ca)

cacb
‖g‖Q′

h

)
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The Brezzi conditions, linear algebra point of
view

Letting uh =
∑n

i=1 uiNi, ph =
∑m

i=1 piLi, vh = Nj , and qh = Lj

we obtain a linear system on the form[
A BT

B 0

] [
u
p

]
=

[
f
0

]
(2)

The question is what the system looks like. Two alternatives:

m B

n

A

0

BT

or

m B

n

A

0

BT

Are both of these non-singular? How do we determine?
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The Brezzi conditions, linear algebra point of
view, cont’d.

• Continuity and coersivity of Ah ensures that Ah is
non-singular

• Continuity and inf-sup condition of Bh ensures that Bh is
non-singular

How come we need inf-sup condition on Bh ? The coersivity
condition seems easier to deal with!
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The Brezzi conditions, linear algebra point of
view, cont’d.

• Continuity and coersivity of Ah ensures that Ah is
non-singular

• Continuity and inf-sup condition of Bh ensures that Bh is
non-singular

Remember that Bh is a rectangular matrix! The inf-sup
condition corresponds to coersivity of BhB

T
h , where Bh is a

discrete divergence and BT
h the discrete gradient.

We also remark that the coersivity and inf-sup conditions are
not inherited from the continuous operators while continuity is
inherited (for conforming methods).
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Abstract error estimate for saddle point
problems

‖u− uh‖V 6
(
1 +

Ca

ca,h

)
inf
vh∈
‖u− vh‖V +

Cb

ca,h
inf

qh∈Qh

‖p− qh‖Q

‖p− ph‖Q 6
Ca

cb,h

(
1 +

Ca

ca,h

)
inf
vh∈
‖u− vh‖V

+
(
1 +

Cb

cb,h
+

CaCb

ca,hcb,h

)
inf

qh∈Qh

‖p− qh‖Q

16 / 1



Abstract error estimate for saddle point
problems for Pk − Pl discretizations

‖u− uh‖1 + ‖p− ph‖0 6 Chk‖u‖k+1 +Dhl+1‖p‖l+1

Here, ‖ · ‖r is the norm of the Sobolev space Hr, i.e., a norm
containing r derivatives.
Note that k = l + 1 will give result in the simplifed estimate

‖u− uh‖1 + ‖p− ph‖0 6 Chk(‖u‖k+1 + ‖p‖k)

Taylor–Hood, Crouzeix-Raviart elements are examples of such
elements.
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Useful FEniCS tools (I)

Mixed elements:

V = VectorFunctionSpace(mesh , "Lagrange", 2)

Q = FunctionSpace(mesh , "Lagrange", 1)

W = V*Q

Defining functions, test and trial functions:

up = Function(W)

(u,p) = split(up)

Shortcut:

(u, p) = Functions(W)

# similar for test and trial functions

(u, p) = TrialFunctions(W)

(v, q) = TestFunctions(W)
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Useful FEniCS tools (II)

Access subspaces:

W.sub(0) #corresponds to V

W.sub(1) #corresponds to Q

Splitting solution into components:

w = Function(W)

solve(a == L, w, bcs)

(u, p) = w.split()

Rectangle mesh:

mesh = RectangleMesh(0.0, 0.0, 5.0, 1.0, 50, 10)

h = CellSize(mesh)
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The FEniCS challenge!

Compute the Stokes flow around a
swimming dolphin!

• Set a no-slip boundary
condition on the upper and
lower channel walls and
around the dolphin
• Set u = (− sin(πy), 0) on the

right inflow boundary
• Impose p = 0 on the left

outflow boundary
• Implement a scheme based on

Taylor–Hood elements
• Implement a scheme based on

the stabilized P2/P2 elements
with a stabilization parameter
β. What happens if you
reduce the size of β?
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Exercise: check the convergence of a known
scheme

We had the error estimate:

‖u− uh‖1 + ‖p− ph‖0 6 Chk‖u‖k+1 +Dhl+1‖p‖l+1

Check if this is correct by manufacturing a right-hand side (and
bc) from a known solution. Assume that u = ∇× sin(πxy) and
p = sin(2πx) and compute the right-hand side as
f = −∆u+∇p. The ∇× operator is defined as (− ∂

∂y ,
∂
∂x).

Compute numerical solutions uh and ph on refinements of the
unit square and check it the error estimate is valid. Use
Taylor-Hood (P2 − P1) as well as (P1 − P1).
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