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The Stokes equations

—Au+Vp=f in Q Momentum equation
V-u=0 in Q Continuity equation
w=g¢gp on Jdp
ou
— —pn=gny on IOy
on

u is the fluid velocity and p is the pressure
® f{is a given body force per unit volume
® g, is a given boundary flow

® g, is a given function for the natural boundary condition
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Variational problem

Multiply the momentum equation by a test function v and
integrate by parts:

/Vu:Vvdx—/pV-vdx:/f'vdx—i—/ gn - vds
Q Q Q N

Short-hand notation:

<VU, VU> _<pvv : U) = <f,1}> + <gN,U>OQN
——

a(u,v) b(v,p) L(v)

Multiply the continuity equation by a test function g:
+(V-u,q) =0
—_——
b(u,q)

Definitions of a(-,-) and b(-,-) are meaningful if v € H'(2) and
p € L*Q)
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Saddle point formulation of the Stokes problem

The Stokes problem is an example of a saddle point problem:
Find (u,p) € V x Q such that for all (v,q) € V x Q

a(u,v) + b(v,p) = L(v)
b(u, q) =0

Sum up: A(u,p;v,q) = a(u,v) + b(v,p) + b(u, q) = L(v)
Mixed spaces:

V =[Hg, r, (@) V = [Hjr, (@)
Q=L*Q) Q= L)
The inf-sup condition
inf sup _bv.g) >C

€0 oeb lvllviiglle =

is critical for the unique solvability of the saddle point problem
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Discrete variational problem

Find (up,pr) € Vi, x Qp, such that for all (vp, qp) € X//; X @;

Ap(Un, Pri Vs an) = ap(Un, va) + ba(Vh, pR) + bn(un, an) = Lp(vp)

A stable mixed element Vj, x Q) C V x @ should satisfy a
uniform inf-sup condition

. bh(“hth)
inf sup —m——— >
ahEQR vy eV}, HUhHVHQhHQ

with ¢, independent of the mesh 7p,!

= The right “mixture” of elements is critical for stability and
convergence!
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The famous Poiseuille flow

POISEUILLE'S LAW
AP 4 T
- L 8
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Poiseuille flow with P, — P, elements
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Figure: Illustration of Poiseuille flow in 2D as computed with

P, — P; elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. Both velocity and pressure
are correct up to round-off error.
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Poiseuille flow with P, — P, elements
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Figure: Illustration of Poiseuille flow in 2D as computed with

P; — P; elements in FEniCS. Left image shows the velocity vectors
while the right image shows the pressure. The velocity is correct but
the pressure is not. The P, — P; discretization violates the inf-sup
condition.
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Unstable and stable Stokes elements

Unstable elements

AVAVAVE

P,/ P, Py/ Py Py/Py

Stable elements

JAVAN

Py/ P, P’/ P, Q2/ Q1

Taylor-Hood elements: Py1/ Py, Qpi1/ Qg for k> 1
Mini-element: P} /Py
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The Stokes problem is a saddle point problem

Saddle point problem

Given bilinear forms and linear forms
°®q(,):VxV >R
® bh(,):VxQ—=R
e L(): V=R

Find (u,p) € V x @ such that for all (v,q) € V x @

a(u,v) + b(v,p) = L(v)
b(u, q) =0 (1)

Operator formulation
Define operators (Riesz representation theorem)
° (Aw,v)yr v = a(w,v) V(w,v) eV xV
* (Bu,q)q@="0bv,q) V(v,9) eV xQ
Au+ BTp = L(v)
Bu =0
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Existence, uniqueness and stability: The

continuous case
e Continuity of A and B
a(w,v) < Cyllw|lvivlly ¥V (w,0) eV xV
b(v,q) < Collvllvllalle V(v,q) €V xQ

e Coercivity of A on ker B:
callvllv € a(v,v) Vv €kerB

® Inf-sup condition:

b
inf sup _bv.a) 2 ¢
1€Quev [vllvllalle

® Compatibility condition for g
Then there exists a unique (u,p) € V X @ solving (SPP), satisfying

ca—I—C’

1
l[ullv < *Hfllw( lglle)

C(ca—l—C)

loller < 1b<<1+—>||fuv + lgller)
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Existence, uniqueness and stability: The discrete

case
e Continuity of Aj, and By,

a(wn,vn) < Callwp|lvlvellv ¥ (wh,vn) € Vi x Vi,
b(vh,%) < CbHUh”V”q}L”Q v (Uluq/L) S ‘/h X Qh

e Coercivity of A, on ker By:

callonllv < alvn,vn) Yo, € ker B

® Inf-sup condition: There is a mesh-independent constant ¢ s.t.

inf b(vn, qn)

S — 2>
€@ v,ev;, lunllviianlle =

e Compatibility condition for g
Then there exists a unique (up,pp) € Vi, X @), solving (SPP),

satisfying
1 Cq + Ca
g —_— ’ /
l[unllv ca”f“Vh (+ o lglle;)
C Colca+ Cq)

1
Ipnllg, < —((L+—=)fllv; + lglle;)
S G c , L
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The Brezzi conditions, linear algebra point of
view
Letting up, = > ;o wiNi, pp = Y oeq piLi, v, = Nj, and g, = L,
we obtain a linear system on the form

T
A B (O f 2)
B 0 P 0
The question is what the system looks like. Two alternatives:
n n
A BT
A BT
mi| B 0
mI B 0
or

Are both of these non-singular? How do we determine?

13/1



The Brezzi conditions, linear algebra point of
view, cont’d.

e Continuity and coersivity of Ay ensures that Ay is
non-singular
® Continuity and inf-sup condition of Bj, ensures that By, is
non-singular
How come we need inf-sup condition on B 7 The coersivity
condition seems easier to deal with!
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The Brezzi conditions, linear algebra point of
view, cont’d.

e Continuity and coersivity of Ay ensures that A is
non-singular
® Continuity and inf-sup condition of Bj, ensures that By, is
non-singular
Remember that By, is a rectangular matrix! The inf-sup
condition corresponds to coersivity of B, B!, where B}, is a
discrete divergence and B,z; the discrete gradient.

We also remark that the coersivity and inf-sup conditions are
not inherited from the continuous operators while continuity is
inherited (for conforming methods).

15/1



Abstract error estimate for saddle point
problems

a

C Cy
- < (1+ inf ||u — v+
lu — upl|v ( Ca,h) quile lu — vp| c

inf —
nf lp — anllo

a,h 9h

C, C,
— < 1+ inf [[u—wv
lp — pallg Cbh( ca,h)vheH nllv
Cb CaCb .
+(1+—+ inf —
( Cb,h Ca,hcb,h) anE€Qn Ip=anlle

)
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Abstract error estimate for saddle point
problems for P, — P; discretizations

lu —upll1 + |[p = pallo < CR®||ul|ps1 + DA pllisa

Here, || - || is the norm of the Sobolev space H", i.e., a norm
containing r derivatives.
Note that k =1+ 1 will give result in the simplifed estimate

lu = wplly + llp = pallo < CR*(Ifullisr + [Ip]1x)

Taylor-Hood, Crouzeix-Raviart elements are examples of such
elements.
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Useful FEniCS tools (I)

Mixed elements:

V = VectorFunctionSpace (mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
W = VxQ

Defining functions, test and trial functions:

up = Function (W)
(u,p) = split(up)

Shortcut:

(u, p) = Functions (W)

# similar for test and trial functions
(u, p) = TrialFunctions (W)

(v, q) = TestFunctions (W)
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Useful FEniCS tools (II)

Access subspaces:

W.sub(0) #corresponds to V
W.sub(1l) #corresponds to @

Splitting solution into components:

w = Function (W)
solve(a == L, w, bcs)
(u, p) = w.split ()

Rectangle mesh:

‘mesh = RectangleMesh (0.0, 0.0, 5.0, 1.0, 50, 10)

[
'h = CellSize(mesh)
L
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The FEniCS challenge!

Compute the Stokes flow around a
swimming dolphin!

Set a no-slip boundary
condition on the upper and
lower channel walls and
around the dolphin

Set u = (—sin(7y),0) on the
right inflow boundary

Impose p = 0 on the left
outflow boundary

Implement a scheme based on
Taylor-Hood elements
Implement a scheme based on
the stabilized P/ Py elements
with a stabilization parameter
8. What happens if you
reduce the size of 87
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Exercise: check the convergence of a known
scheme

We had the error estimate:
[w —unlls + [lp — prllo < CR*||lulles1 + DR D)l

Check if this is correct by manufacturing a right-hand side (and
be) from a known solution. Assume that u = V x sin(rzy) and
p = sin(2rz) and compute the right-hand side as

f=—Au+ Vp. The Vx operator is defined as (—8%, 6%).
Compute numerical solutions uy, and pp on refinements of the
unit square and check it the error estimate is valid. Use
Taylor-Hood (P2 — P;) as well as (P; — Py).
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