FEniCS Course
Lecture 0: Introduction to FEM

Contributors
Anders Logg, Kent-Andre Mardal

FENICS
NMOJECT

%

1/46

What is FEM?

The finite element method is a framework and a recipe for
discretization of mathematical problems in general

Examples:

e Ordinary differential equations

Partial differential equations

Integral equations

A recipe for discretization of PDE

That is, PDE — Ax =b

Issues that arise: choice of bases, stabilization, error

control, adaptivity, computational complexity

2 /46

The FEM cookbook
(i)
Partial differential equation

(i)

N
. W\N a(u,v) = L(v) | Continuous variational problem
P
W L’ (iii)
N (/\I Discrete variational problem
w
v o (iv)
{/5\35 AU =0 System of discrete equations
=
O

The method is a truely practical method that allows you to
discretize any PDE on any domain and at the same time
analyze (or even control) accuracy, stability, and computational
complexity from a theoretical point of view

3 /46

The PDE (i)

Consider Poisson’s equation, the Hello World of partial
differential equations:

—Au=f inQ

u=ug on 0f)
Poisson’s equation arises in numerous applications:

e heat conduction, electrostatics, diffusion of substances,
twisting of elastic rods, inviscid fluid flow, water waves,

magnetostatics, ...

e as part of numerical splitting strategies for more
complicated systems of PDEs, in particular the

Navier—Stokes equations

4/46

From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and

integrate over §2:
- / (Au)vdz = / fvdx
Q 0

Then integrate by parts and set v = 0 on the Dirichlet

boundary:
/(Au vdx—/Vu Vvdx—/ —vds
Q 00 0
h,_/

=0
We find that:

Vu-Vvd:L‘:/fvd:L"
Q Q

5 /46

The variational problem (ii)

Find v € V such that

/Vu-Vvdx:/fvdx
Q Q

forallv eV

The trial space V and the test space V are (here) given by

V ={ve H(Q):v=uon IN}
V={ve H(Q):v=0o0ndQ}

6 /46

From continuous (ii) to discrete (iii) problem

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V:

ViV
V@ C:ty

Find up € V3, C V such that

/Vuh-Vvdx—/fde
Q Q

forallvthCV

7 /46

From discrete variational problem (iii) to

discrete system of equations (iv)

Choose a basis for the discrete function space:

Vi = span {6},
That is, we go from an abstract problem which applies to any
bases to a concrete linear system in a given basis

Then, we make an ansatz for the discrete solution:

N
un =) Ujds
=1

Test against the basis functions:

N
i V(3 Uyts): Ve = | 1ua0
——

Up

8 /46

From discrete variational problem (iii) to

discrete system of equations (iv), cont’d.

Rearrange to get:

N
ZUj/ Vo, -V de = / fo; dx
1 Q . Q
J ~ ~—
Aij bi
A linear system of equations:
AU =b
where
Aij = / V¢] . V¢Z dx (1)
Q
b= [Fouda 2)

9 /46

The canonical abstract problem
(i) Partial differential equation:
Au=f inQ
(ii) Continuous variational problem: find u € V such that
a(u,v) = L(v) forallveV

(integrate by parts and employ boundary conditions for trial or
test functions)
(iii) Discrete variational problem: find wuy, € V3, C V such that

alup,v) = L(v) forallv eV,
(choose an appropriate subspace)
(iv) Discrete system of equations for uj = Z;Vﬂ Ujo;:
AU =10
Aij = alj, ¢i), bi = L(¢i)

(choose a concrete basis for the appropriate subspace)
10 / 46

Important topics

e How to choose Vj, ¢

e How to compute A and b

e How to solve AU = b?

e Can we quantify/control How large the error e = u — uy, is?
o (Can we assess the cost of solving the system?

e Extensions to nonlinear, time-dependent, complicated

problems

11 /46

How to choose V),

12 /46

Finite element function spaces

Up,

13 /46

The finite element definition (Ciarlet 1975)

A finite element is a triple (7, V), L), where

e the domain T is a bounded, closed subset of R? (for
d=1,2,3,...) with nonempty interior and piecewise
smooth boundary

e the space V = V(T) is a finite dimensional function space
on T of dimension n

e the set of degrees of freedom (nodes) £ = {{1,02,...,0,} is
a basis for the dual space V’; that is, the space of bounded

linear functionals on V

14 /46

The finite element definition is kind of abstract

A finite element is a triple (7, V, L), is used as follows

e the domain T is used to divide the mesh into subdomains

represented by T

e the space V is used to evaluate the variational forms locally

for each subdomain T’

e the set of degrees of freedom L is used to glue together the
localized function space (V) to a global function space

using the degrees of freedom

15 /46

The finite element definition (Ciarlet 1975)

16 /46

The linear Lagrange element: (7,V, L)

e T is a line, triangle or tetrahedron
e V is the first-degree polynomials on T

e [is point evaluation at the vertices

17 /46

The linear Lagrange element: L

18 / 46

The linear Lagrange element: V),

'U,h(ai', y)

19 /46

The quadratic Lagrange element: (7,V, L)

e T is a line, triangle or tetrahedron
e)V is the second-degree polynomials on T’

e [is point evaluation at the vertices and edge midpoints

20/ 46

The quadratic Lagrange element: L

21 /46

The quadratic Lagrange element: 1,

22 /46

Families of elements

NedelecHermite

Mardal-Tai- Wmther Brezzi-Douglas-Fortin-Marini

Brezzi-Douglas- Manﬂ
Lagrange--=

Raviart-Thomas [);

Crouzeix-Ravia

Families of elements

Ahbhibbbbb

Gk
hiabbhbbhb

B¢ 4 N YN N 4

Computing the sparse matrix A

25 /46

Why is the matrix sparse?

26 /46

Naive assembly algorithm

A=0
fori=1,...,N
forj=1,...,N
Aij = a(dj, ¢i)
end for

end for

27 / 46

The element matrix

The global matrix A is defined by

Aij = a(¢j, 1)

The element matriz A is defined by

Apij = ar(¢),¢;])

28 / 46

The local-to-global mapping
The global matrix 7 is defined by
I = LT(i)

where I is the global index corresponding to the local index i

29 /46

The assembly algorithm

A=0

for T €T
Compute the element matrix Ap
Compute the local-to-global mapping ¢p
Add A7 to A according to vp

end for

30/ 46

Adding the element matrix Ap

201 22) 20)
1
(1) 2
3
L(2) f
4(3) Aras

31 /46

Solving AU = b

32 /46

Direct methods

e (Gaussian elimination
e Requires ~ %N 3 operations
e LU factorization: A = LU

e Solve requires ~ %N 3 operations
e Reuse L and U for repeated solves
e Cholesky factorization: A = LLT
e Works if A is symmetric and positive definite
e Solve requires ~ £ N? operations

e Reuse L for repeated solves

33 /46

Iterative methods

Krylov subspace methods

e GMRES (Generalized Minimal RESidual method)
e CG (Conjugate Gradient method)

o Works if A is symmetric and positive definite
e BiCGSTAB, MINRES, TFQMR, ...
Multigrid methods
e GMG (Geometric MultiGrid)
e AMG (Algebraic MultiGrid)
Preconditioners
e ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive

Schwarz, ...
34/46

Which method should I use?

Rules of thumb
e Direct methods for small systems

e Iterative methods for large systems

Break-even at ca 100-1000 degrees of freedom
e Use a symmetric method for a symmetric system
e Cholesky factorization (direct)

e CG (iterative)

e Use a multigrid preconditioner for Poisson-like systems

GMRES with ILU preconditioning is a good default choice

35 /46

A test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(,y) = 1+ a® + 2y

We insert this into Poisson’s equation:

f=-Au=-A(1+2>4+2y)=—-(2+4)=-6

This technique is called the method of manufactured solutions

36 / 46

Implementation in FEniCS

from fenics import *

mesh = UnitSquareMesh (8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

u0 = Expression("1 + x[0]*x[0] + 2xx[11*x[1]1",
degree=2)
bc = DirichletBC(V, u0, "on_boundary")

Hh
I

Constant (-6.0)

TrialFunction (V)

[=]
]

v = TestFunction (V)

37 /46

L, L, . T, .~

Step by step: the first line

The first line of a FEniCS program usually begins with

from fenics import =x*

This imports key classes like UnitSquareMesh, FunctionSpace,
Function and so forth, from the FEniCS user interface
(DOLFIN)

38 /46

Step by step: creating a mesh

Next, we create a mesh of our domain €2:

mesh = UnitSquareMesh(8, 8)

This defines a mesh of 8 x 8 x 2 = 128 triangles of the unit
square.

Other useful classes for creating built-in meshes include
UnitIntervalMesh, UnitCubeMesh, UnitCircleMesh,
UnitSphereMesh, RectangleMesh and BoxMesh

More complex geometries can be built using Constructive Solid
Geometry (CSG) through the FEniCS component mshr:

from mshr import *
r = Rectangle(Point (0.5, 0.5), Point(1.5, 1.5))
c = Circle(Point (1.0, 1.0), 0.2) 39 /46

Step by step: creating a function space

The following line creates a finite element function space
relative to this mesh:

V = FunctionSpace(mesh, "Lagrange", 1)

The second argument specifies the type of element, while the
third argument is the degree of the basis functions on the
element

Other types of elements include "Discontinuous Lagrange",
"Brezzi-Douglas-Marini", "Raviart-Thomas",
"Crouzeix-Raviart", "Nedelec 1st kind H(curl)" and
"Nedelec 2nd kind H(curl)"

40/ 46

Step by step: defining expressions

Next, we define an expression for the boundary value:

u0 = Expression("1 + x[0]*x[0] + 2xx[1]*x[1]",

degree=2)

The formula must be written in C++ syntax, and the
polynomial degree must be specified.

The Expression class is very flexible and can be used to create
complex user-defined expressions. For more information, try

from fenics import =x*

help (Expression)

in Python or, in the shell:

‘ | 41/ 46

| R o _

Step by step: defining a boundary condition

The following code defines a Dirichlet boundary condition:

bc = DirichletBC(V, u0, "on_boundary")

This boundary condition states that a function in the function
space defined by V should be equal to u0 on the domain defined
by "on_boundary"

Note that the above line does not yet apply the boundary
condition to all functions in the function space

42 / 46

Step by step: more about defining domains

For a Dirichlet boundary condition, a simple domain can be defined
by a string

"on_boundary" # The entire boundary
1

Alternatively, domains can be defined by subclassing SubDomain

class Boundary (SubDomain) :
def inside(self, x, on_boundary):

return on_boundary

You may want to experiment with the definition of the boundary:

"near (x[0], 0.0)" # x_0 = 0
"near (x[0], 0.0) || near(x[1], 1.0)"

There are many more possibilities, see

help(SubDomain)

help(DirichletBC)

43 / 46

Step by step: defining the right-hand side

The right-hand side f = —6 may be defined as follows:

f = Expression("-6.0", degree=0)

or (more efficiently) as

f = Constant(-6.0)

44 / 46

Step by step: defining variational problems

Variational problems are defined in terms of trial and test
functions:

u = TrialFunction (V)

v = TestFunction (V)

We now have all the objects we need in order to specify the
bilinear form a(u,v) and the linear form L(v):

[
]

inner (grad (u), grad(v))*dx
L = fxvxdx

45 / 46

Step by step: solving variational problems

Once a variational problem has been defined, it may be solved
by calling the solve function:

u = Function (V)

solve(a == L, u, bc)

Note the reuse of the variable name u as both a TrialFunction
in the variational problem and a Function to store the solution.

46 / 46

Step by step: post-processing using Notebooks

Add these incantations on top (after importing dolfin/fenics)

import pylab

/matplotlib inline

parameters["plotting_backend"] = "matplotlib"

The solution and the mesh may be plotted by simply calling:

plot (u)
pylab.show ()
plot (mesh)

pylab.show ()

For postprocessing in ParaView or MayaVi, store the solution
in VTK format:

47 / 46

