
FEniCS Course
Lecture 0: Introduction to FEM

Contributors
Anders Logg, Kent-Andre Mardal

1 / 46

What is FEM?

The finite element method is a framework and a recipe for
discretization of mathematical problems in general

Examples:

• Ordinary differential equations

• Partial differential equations

• Integral equations

• A recipe for discretization of PDE

• That is, PDE → Ax = b

• Issues that arise: choice of bases, stabilization, error

control, adaptivity, computational complexity

2 / 46

The FEM cookbook

Au = f

a(u, v) = L(v)

a(uh, v) = L(v)

AU = b

Partial differential equation

Continuous variational problem

Discrete variational problem

System of discrete equations

Multip
ly

by v

Take V
h
⊂ V

Let u
h

=
∑

j
Ujφ

j

(i)

(ii)

(iii)

(iv)

The method is a truely practical method that allows you to
discretize any PDE on any domain and at the same time
analyze (or even control) accuracy, stability, and computational
complexity from a theoretical point of view

3 / 46

The PDE (i)

Consider Poisson’s equation, the Hello World of partial
differential equations:

−∆u = f in Ω

u = u0 on ∂Ω

Poisson’s equation arises in numerous applications:

• heat conduction, electrostatics, diffusion of substances,

twisting of elastic rods, inviscid fluid flow, water waves,

magnetostatics, . . .

• as part of numerical splitting strategies for more

complicated systems of PDEs, in particular the

Navier–Stokes equations

4 / 46

From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and
integrate over Ω:

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx

Then integrate by parts and set v = 0 on the Dirichlet
boundary:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds︸ ︷︷ ︸

=0

We find that: ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

5 / 46

The variational problem (ii)

Find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂

The trial space V and the test space V̂ are (here) given by

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}

6 / 46

From continuous (ii) to discrete (iii) problem

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V̂ :

Vh ⊂ V
V̂h ⊂ V̂

Find uh ∈ Vh ⊂ V such that∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂h ⊂ V̂

7 / 46

From discrete variational problem (iii) to

discrete system of equations (iv)

Choose a basis for the discrete function space:

Vh = span {φj}Nj=1

That is, we go from an abstract problem which applies to any
bases to a concrete linear system in a given basis

Then, we make an ansatz for the discrete solution:

uh =

N∑
j=1

Ujφj

Test against the basis functions:∫
Ω
∇(

N∑
j=1

Ujφj︸ ︷︷ ︸
uh

) · ∇φi dx =

∫
Ω
fφi dx

8 / 46

From discrete variational problem (iii) to

discrete system of equations (iv), cont’d.

Rearrange to get:

N∑
j=1

Uj

∫
Ω
∇φj · ∇φi dx︸ ︷︷ ︸

Aij

=

∫
Ω
fφi dx︸ ︷︷ ︸
bi

A linear system of equations:

AU = b

where

Aij =

∫
Ω
∇φj · ∇φi dx (1)

bi =

∫
Ω
fφi dx (2)

9 / 46

The canonical abstract problem

(i) Partial differential equation:

Au = f in Ω

(ii) Continuous variational problem: find u ∈ V such that

a(u, v) = L(v) for all v ∈ V̂

(integrate by parts and employ boundary conditions for trial or
test functions)
(iii) Discrete variational problem: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) for all v ∈ V̂h
(choose an appropriate subspace)
(iv) Discrete system of equations for uh =

∑N
j=1 Ujφj :

AU = b

Aij = a(φj , φi), bi = L(φi)

(choose a concrete basis for the appropriate subspace)
10 / 46

Important topics

• How to choose Vh?

• How to compute A and b

• How to solve AU = b?

• Can we quantify/control How large the error e = u− uh is?

• Can we assess the cost of solving the system?

• Extensions to nonlinear, time-dependent, complicated

problems

11 / 46

How to choose Vh

12 / 46

Finite element function spaces

u

uh

t

13 / 46

The finite element definition (Ciarlet 1975)

A finite element is a triple (T,V,L), where

• the domain T is a bounded, closed subset of Rd (for

d = 1, 2, 3, . . .) with nonempty interior and piecewise

smooth boundary

• the space V = V(T) is a finite dimensional function space

on T of dimension n

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is

a basis for the dual space V ′; that is, the space of bounded

linear functionals on V

14 / 46

The finite element definition is kind of abstract

A finite element is a triple (T,V,L), is used as follows

• the domain T is used to divide the mesh into subdomains

represented by T

• the space V is used to evaluate the variational forms locally

for each subdomain T

• the set of degrees of freedom L is used to glue together the

localized function space (V) to a global function space

using the degrees of freedom

15 / 46

The finite element definition (Ciarlet 1975)

T V L

v(x̄)

∫
T v(x)w(x) dx

v(x̄) · n

16 / 46

The linear Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the first-degree polynomials on T

• L is point evaluation at the vertices

17 / 46

The linear Lagrange element: L

18 / 46

The linear Lagrange element: Vh

T = {T}

T

uh(x, y)

19 / 46

The quadratic Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the second-degree polynomials on T

• L is point evaluation at the vertices and edge midpoints

20 / 46

The quadratic Lagrange element: L

21 / 46

The quadratic Lagrange element: Vh

22 / 46

Families of elements

23 / 46

Families of elements

24 / 46

Computing the sparse matrix A

25 / 46

Why is the matrix sparse?

26 / 46

Naive assembly algorithm

A = 0

for i = 1, . . . , N

for j = 1, . . . , N

Aij = a(φj , φi)

end for

end for

27 / 46

The element matrix

The global matrix A is defined by

Aij = a(φj , φi)

The element matrix AT is defined by

AT,ij = aT (φTj , φ
T
i)

28 / 46

The local-to-global mapping

The global matrix ιT is defined by

I = ιT (i)

where I is the global index corresponding to the local index i

1

2

3

5

6

4

1
6

2

4

3

5

1

5

2 2

9

4

8
7

3

6

4

9

29 / 46

The assembly algorithm

A = 0

for T ∈ T

Compute the element matrix AT

Compute the local-to-global mapping ιT

Add AT to A according to ιT

end for

30 / 46

Adding the element matrix AT

ι2T (1)

1

2

3

1 2 3

AT,32

ι2T (2) ι2T (3)

ι1T (1)

ι1T (2)

ι1T (3)

31 / 46

Solving AU = b

32 / 46

Direct methods

• Gaussian elimination

• Requires ∼ 2
3N

3 operations

• LU factorization: A = LU

• Solve requires ∼ 2
3N

3 operations

• Reuse L and U for repeated solves

• Cholesky factorization: A = LL>

• Works if A is symmetric and positive definite

• Solve requires ∼ 1
3N

3 operations

• Reuse L for repeated solves

33 / 46

Iterative methods

Krylov subspace methods

• GMRES (Generalized Minimal RESidual method)

• CG (Conjugate Gradient method)

• Works if A is symmetric and positive definite

• BiCGSTAB, MINRES, TFQMR, . . .

Multigrid methods

• GMG (Geometric MultiGrid)

• AMG (Algebraic MultiGrid)

Preconditioners

• ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive

Schwarz, . . .
34 / 46

Which method should I use?

Rules of thumb

• Direct methods for small systems

• Iterative methods for large systems

• Break-even at ca 100–1000 degrees of freedom

• Use a symmetric method for a symmetric system

• Cholesky factorization (direct)

• CG (iterative)

• Use a multigrid preconditioner for Poisson-like systems

• GMRES with ILU preconditioning is a good default choice

35 / 46

A test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u(x, y) = 1 + x2 + 2y2

We insert this into Poisson’s equation:

f = −∆u = −∆(1 + x2 + 2y2) = −(2 + 4) = −6

This technique is called the method of manufactured solutions

36 / 46

Implementation in FEniCS

from fenics import *

mesh = UnitSquareMesh(8, 8)

V = FunctionSpace(mesh , "Lagrange", 1)

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]",

degree=2)

bc = DirichletBC(V, u0, "on_boundary")

f = Constant(-6.0)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

u = Function(V)

solve(a == L, u, bc)

plot(u)

interactive () # If using VTK plotting

37 / 46

Step by step: the first line

The first line of a FEniCS program usually begins with

from fenics import *

This imports key classes like UnitSquareMesh, FunctionSpace,
Function and so forth, from the FEniCS user interface
(DOLFIN)

38 / 46

Step by step: creating a mesh

Next, we create a mesh of our domain Ω:

mesh = UnitSquareMesh(8, 8)

This defines a mesh of 8× 8× 2 = 128 triangles of the unit
square.

Other useful classes for creating built-in meshes include
UnitIntervalMesh, UnitCubeMesh, UnitCircleMesh,
UnitSphereMesh, RectangleMesh and BoxMesh

More complex geometries can be built using Constructive Solid
Geometry (CSG) through the FEniCS component mshr:

from mshr import *

r = Rectangle(Point(0.5, 0.5), Point(1.5, 1.5))

c = Circle(Point(1.0, 1.0), 0.2)

g = r - c

mesh = generate_mesh(g, 10)

39 / 46

Step by step: creating a function space

The following line creates a finite element function space
relative to this mesh:

V = FunctionSpace(mesh , "Lagrange", 1)

The second argument specifies the type of element, while the
third argument is the degree of the basis functions on the
element

Other types of elements include "Discontinuous Lagrange",
"Brezzi-Douglas-Marini", "Raviart-Thomas",
"Crouzeix-Raviart", "Nedelec 1st kind H(curl)" and
"Nedelec 2nd kind H(curl)"

40 / 46

Step by step: defining expressions

Next, we define an expression for the boundary value:

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]",

degree=2)

The formula must be written in C++ syntax, and the
polynomial degree must be specified.

The Expression class is very flexible and can be used to create
complex user-defined expressions. For more information, try

from fenics import *

help(Expression)

in Python or, in the shell:

$ pydoc fenics.Expression
41 / 46

Step by step: defining a boundary condition

The following code defines a Dirichlet boundary condition:

bc = DirichletBC(V, u0, "on_boundary")

This boundary condition states that a function in the function
space defined by V should be equal to u0 on the domain defined
by "on boundary"

Note that the above line does not yet apply the boundary
condition to all functions in the function space

42 / 46

Step by step: more about defining domains
For a Dirichlet boundary condition, a simple domain can be defined
by a string

"on_boundary" # The entire boundary

Alternatively, domains can be defined by subclassing SubDomain

class Boundary(SubDomain):

def inside(self , x, on_boundary):

return on_boundary

You may want to experiment with the definition of the boundary:

"near(x[0], 0.0)" # x_0 = 0

"near(x[0], 0.0) || near(x[1], 1.0)"

There are many more possibilities, see

help(SubDomain)

help(DirichletBC)

43 / 46

Step by step: defining the right-hand side

The right-hand side f = −6 may be defined as follows:

f = Expression("-6.0", degree=0)

or (more efficiently) as

f = Constant(-6.0)

44 / 46

Step by step: defining variational problems

Variational problems are defined in terms of trial and test
functions:

u = TrialFunction(V)

v = TestFunction(V)

We now have all the objects we need in order to specify the
bilinear form a(u, v) and the linear form L(v):

a = inner(grad(u), grad(v))*dx

L = f*v*dx

45 / 46

Step by step: solving variational problems

Once a variational problem has been defined, it may be solved
by calling the solve function:

u = Function(V)

solve(a == L, u, bc)

Note the reuse of the variable name u as both a TrialFunction

in the variational problem and a Function to store the solution.

46 / 46

Step by step: post-processing using Notebooks

Add these incantations on top (after importing dolfin/fenics)

import pylab

%matplotlib inline

parameters["plotting_backend"] = "matplotlib"

The solution and the mesh may be plotted by simply calling:

plot(u)

pylab.show()

plot(mesh)

pylab.show()

For postprocessing in ParaView or MayaVi, store the solution
in VTK format:

file = File("poisson.pvd")

file << u

47 / 46

