
Chapter 6

Simulating anisotropic diffusion in
heterogeneous brain regions

In this chapter, we return to our model problem (1.1) and bring together the
different tools and techniques introduced in Chapters 3 to 5. The computa-
tional domain will be determined from T1-weighted data and divided into
grey and white matter subdomains, diffusion tensor imaging (DTI) data will
be employed in the construction of the heterogeneous and anisotropic diffusion
tensor, and specific sub regions, such as the hippocampus, will be selected to
assess site-specific clearance.

In practice, one should first address data and mesh resolution issues. For
instance, raw DTI data can exhibit rough transitions, as well as noise. This is
particularly true in the grey matter proximal to cerebrospinal fluid (e.g. Fig-
ures 5.2 and 5.4 in Chapter 5). Here, we assume that the DTI data have been
suitably smoothened and denoised for use in simulations. In addition, we must
ascertain a mesh resolution that is suitable to provide reliable estimates of the
spread and clearance of different molecules, while avoiding the unnecessary
computational costs associated with over-resolving the mesh.

6.1 Molecular diffusion in one dimension

To estimate the required spatial mesh resolution, the discrete time step, and
the time scale of solute clearance, it is useful to first consider equation (1.1) in
one dimension for different molecules. Here, we consider the protein fragment
amyloid-beta (Aβ) associated with neurodegenerative disease [31], the tracer
gadobutrol used in glymphatic magnetic resonance imaging [52], and water.
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90 6 Simulating anisotropic diffusion in heterogeneous brain regions

The effective diffusion coefficient D in brain tissue for each of these molecules
is estimated to be 6.2×10−5 mm2/s, 1.3×10−4 mm2/s, and 1.1×10−3 mm2/s,
respectively [65, 63].

6.1.1 Analytical solution

In one dimension and over the domain (0,∞), the parabolic diffusion problem
(1.1) with u0(x) = 0, u(0, t) = 1, and u(∞, t) = 0 allows for a simple analytic
solution:

u(x, t) = erfc(x/(2
√
Dt)). (6.1)

Figure 6.1 shows solutions of (6.1) zoomed in on the (left) first 2 mm of
the domain, and the (middle) first 10 mm after 9 hours, and (right) the first
10 mm after 24 hours. It is evident that diffusion is a slow process: signifi-
cant concentration changes occur within 2 mm of the boundary after 9 hours;
however, 1 cm away, the heavier molecules, amyloid-beta and gadobutrol, still
have concentrations near zero. The source code for generating these plots is
available in mri2fem/chp6/analytical 1D.py.

Fig. 6.1 Diffusion according to (6.1): concentration (y-axis, arbitrary unit) versus
distance from the source/left boundary (x-axis, in mm) after 9 hours (left and middle)
and after 24 hours (right).

6.1.2 Numerical solution and handling numerical artifacts

We next discretize (1.1) using the finite element method (as described in Chap-
ter 3). Note, however, that the sharp change in the boundary versus initial
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conditions for our model problem can lead to artificial oscillations in the nu-
merical solution. Such oscillations often diminish with refinement; they can
also be avoided through the use of monotonic or maximum principle preserving
schemes. Another common method, which we consider here, for Galerkin finite
element schemes is mass lumping (e.g. [39]). We provide FEniCS-based source
code for the finite element solution of (1.1) with and without mass lumping in
mri2fem/chp6/diffusion 1D.py. To use this script, see, for example

$ cd mri2fem/chp6

$ python3 diffusion 1D.py --help

Fig. 6.2 Comparison of standard Galerkin (left) and mass-lumped (right) finite ele-
ment schemes of the diffusion equation (1.1) in one dimension over Ω = (0, 50) mm.
The amyloid-beta concentration (y-axis, arbitrary unit) versus length (x-axis, in mm).
Upper row: solution at time t = 30 minutes, with Δt = 5 minutes. Lower row: Solution
at time t = 9 hours.
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The standard and mass-lumped finite element solutions are shown in Fig-
ure 6.2 at different times and with different time steps. Early, for coarse res-
olutions (N = 10 or N = 20), the standard approach yields considerable
nonphysical oscillations, whereas the mass-lumped solution (right) produces
significant numerical diffusion. However, in the longer term context, the stan-
dard Galerkin scheme is clearly desirable: the former allows for a spatial res-
olution of N = 10 or N = 20, whereas the latter requires N = 40 or N = 80
to control the numerical diffusion. Essentially, the initial error from the short-
term Gibbs phenomena, that is, the discontinuous initial data, is no match
for the long-term regularizing effect of the parabolic partial differential equa-
tion. Therefore, these early errors do not contribute much to the long-term
numerical solution.

In conclusion, these results suggest that, if we are interested in long-term
dynamics, a time step size of Δt ≈ 5 minutes with a spatial resolution of N =
10 or N = 20, corresponding roughly to a quasi-uniform mesh cell diameter of
0.25 mm ≤ h ≤ 0.5 mm, is a good starting target for the standard Galerkin
approach in our three dimensional (3D) discretization. Conversely, a mesh size
of N = 80, or h ≈ 6.25× 10−2 mm, is needed for the mass-lumped case. This
would be a much more costly choice on a 3D mesh, and unnecessary if the
short-term dynamics need not be resolved.

6.2 Anisotropic diffusion in 3D brain regions

In this section, we consider simulations of gadobutrol diffusion and compute
the average concentrations in different brain regions. In particular, we begin
with the following steps:

• We create a brain mesh with grey and white matter marked and ventricles
removed and mark parcellation regions as described in Chapter 4.4.2.

• We filter and map our DTI data onto this geometry as described in Chap-
ter 5.2.2.

• Using FEniCS, we implement a version of the diffusion simulation script
presented in Chapter 3.3.3 allowing for anisotropic diffusion and the com-
putation of integrals over labelled regions.

In the numerical simulation, we represent the DTI data in the form of a hetero-
geneous and anisotropic diffusion tensor field D. The FEniCS code for setting
up the diffusion tensor field reads
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# read the DTI

T = TensorFunctionSpace(mesh , "DG", 0)

D = Function(T)

hdf.read(D, "/DTI")

We compute the average amount of tracer in a labelled region by integrating
the concentration over the region and dividing by the region’s volume as follows
(with the regions labelled 17 and 1035 as examples):

unit17 += [assemble(u*dx(17))/vol17]

unit1035 += [assemble(u*dx(1035))/vol1035]

The precise commands run are included in mri2fem/chp6/all.sh, and the
script mri2fem/chp6/chp6-diffusion-mritracer.py gives the complete FEn-
iCS code.

6.2.1 Regional distribution of gadobutrol

We compute the average concentrations of gadobutrol diffusing in from the
brain’s surface in regions 17 (hippocampus), 1035 (insula grey matter), 3035
(insula white matter), 1028 (superior frontal grey matter), and 3028 (superior
frontal white matter). Gadobutrol has a diffusivity approximately twice that
of amyloid-beta, and the estimated mesh size and time step of the previous
section should therefore apply to this case as well. The resulting curves are
shown in Figure 6.3, and the simulations are shown in Figures 6.4–6.5. Note
that, here, we consider the tracer distribution in certain regions as a function
of time; the distribution therefore starts at a low value and increases with
time as the solute diffuses throughout the brain. Clearly, the distribution of
gadobutrol in the grey matter regions and hippocampus are affected much
more than in the white matter regions. This result is expected since both the
grey matter and hippocampus are closer to the cerebrospinal fluid where, in
our simulation, the gadobutrol concentration is assumed to reside initially.
It is also observed that the upper regions, that is, the superior frontal grey
and white matter (1028 and 3028, respectively), experience faster gadobutrol
deposition than the corresponding regions on the side of the brain.



94 6 Simulating anisotropic diffusion in heterogeneous brain regions

Fig. 6.3 Average concentration of gadobutrol (y-axis, arbitrary unit) versus time (x-
axis, hours) in different brain regions: 17 (hippocampus), 1035 (insula grey matter),
3035 (insula white matter), 1028 (superior frontal grey matter), and 3028 (superior
frontal white matter). Time step: 6 minutes, N = 64 brain mesh (cf. below).

Fig. 6.4 The simulated distribution of gadobutrol, for a mesh with resolution param-
eter set to 32, after 0 hours (left), after 5 hours (middle) and after 9 hours (right).

6.2.2 Accuracy and convergence of computed quantities

A common question and topic in numerical simulations is whether the com-
puted solutions have converged. We therefore investigate next the mesh conver-
gence of the standard Galerkin and mass-lumped Galerkin approaches. More
precisely, we consider a set of meshes, aiming to determine the accuracy of
the numerical solution. In this example, we consider a roughly uniform refine-
ment, but the mesh is not refined in place; rather, a sequence of meshes is first
generated at different resolutions using the surface volume meshing toolkit



6.2 Anisotropic diffusion in 3D brain regions 95

Fig. 6.5 Illustration of the simulated distribution of solute concentration in the brain
within the cranium.

(SVM-Tk). In particular, we construct a sequence of quasi-uniform meshes, as
follows (using mri2fem/chp6/create mesh refinements.py):

import SVMTK as svmtk

import time

# Import surfaces , and merge lh/rh white surfaces

ventricles = svmtk.Surface("surfaces/lh.ventricles.stl")

lhpial = svmtk.Surface("surfaces/lh.pial.stl")

rhpial = svmtk.Surface("surfaces/rh.pial.stl")

white = svmtk.Surface("surfaces/lh.white.stl")

rhwhite = svmtk.Surface("surfaces/rh.white.stl")

white.union(rhwhite)

surfaces = [lhpial , rhpial , white , ventricles]

# Create subdomain map

smap = svmtk.SubdomainMap ()

smap.add("1000", 1)

smap.add("0100", 1)

smap.add("0110", 2)

smap.add("0010", 2)

smap.add("1010", 2)
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smap.add("0111", 3)

smap.add("1011", 3)

# Create domain

domain = svmtk.Domain(surfaces , smap)

# Create meshes of increasing resolutions

Ns = [16 , 32 , 64, 128]

for N in Ns:

print("Creating mesh for N=%d" % N)

t0 = time.time()

domain.create_mesh(N)

domain.remove_subdomain([3])

domain.save("brain_%d.mesh" % N)

t1 = time.time()

print("Done! That took %g sec" % (t1-t0))

After creating the meshes we mark the subdomains of interest and map
the DTI data onto the mesh, before running the simulations. The following
is a code snippet from mri2fem/chp6/all.sh that shows how the 16 mesh is
created by the scripts described in the previous chapters:

# using the 16 mesh

# convert to h5

python3 ../ chp4/convert_to_dolfin_mesh.py \

--meshfile brain_16.mesh --hdf5file brain_16.h5

# mark subdomains

python3 ../ chp4/add_parcellations.py \

--in_hdf5 brain_16.h5 \

--in_parc ../ chp4/wmparc.mgz \

--out_hdf5 brain_16_tags.h5 \

--add 17 1028 1035 3028 3035

# add dti to the h5 file

python3 ../ chp5/dti_data_to_mesh.py \

--dti ../ chp5/clean -dti.mgz \

--mesh brain_16_tags.h5 --label 1 0.4 0.6 \

--out DTI_16.h5

# run simulation

python3 chp6 -diffusion -mritracer.py --mesh DTI_16.h5 \

--lumped lumped --label uniform16lumped
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python3 chp6 -diffusion -mritracer.py --mesh DTI_16.h5 \

--lumped not --label uniform16notlumped

The average gadobutrol concentrations in the hippocampus over time for the
sequence of meshes generated here are shown in Figure 6.6, with (right) and
without (left) mass lumping. Clearly, the standard Galerkin approach (left)
seems to yield more consistent results than the mass-lumped Galerkin scheme
(right). However, even for the standard Galerkin scheme, whether the solutions
are fully converged seems questionable at the highest resolution tested (around
15.5 million mesh cells). Recall that piecewise constants are used to represent
the anisotropic diffusion tensor D. This DG construction requires about nine
entries per cell, thus yielding approximately 140 million values for 15.5 mil-
lion cells. Higher resolutions, such as those for piecewise linear or quadratic
constructions, are not feasible on a personal computing device with only 32
gigabytes of RAM.

Fig. 6.6 Average gadobutrol concentration in the hippocampus (y-axis, arbitrary
unit) versus time (x-axis, hours) for different mesh resolutions, Δt = 6 min. Quasi-
uniform mesh sequence with N = 16, 32, 64, 128 generated by SVM-Tk. Standard
Galerkin (left) versus mass-lumped Galerkin (right) discretizations.

To further assess the accuracy and convergence of the computed concen-
trations under mesh refinements, we therefore also consider adaptively refined
meshes. In particular, we focus on the hippocampus and adaptively refine the
meshes in this region, starting from the N = 16 brain mesh of the previous
mesh sequence. Again, we plot the average gadobutrol concentrations in the
hippocampus over time for a sequence of adaptively refined meshes (see Fig-
ure 6.7 with (right) and without (left) mass-lumping). Using this technique,
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we find the solutions between the second, third, and fourth adaptive refine-
ments differ little for the standard scheme. However, mesh convergence for the
mass-lumped Galerkin strategy remains unclear, even after four refinements
to the hippocampal region. Finally, looking at the mesh statistics (number
of vertices, cells, and range of mesh sizes) for the uniformly and adaptively
refined meshes (Tables 6.2.2 and 6.2.2), we note that the actual h required for
mesh convergence is around two to ten times smaller than our initial estimate
(Section 6.1).

Fig. 6.7 Average gadobutrol concentration in the hippocampus (y-axis, arbitrary
unit) versus time (x-axis, hours) for a sequence of adaptively refined meshes, Δt = 6
minutes. Standard Galerkin (left) versus mass-lumped Galerkin (right) discretizations.

Refinement Vertices Cells hmin hmax

16 94K 457K 0.97 11.4
32 194K 908K 0.46 5.7
64 567K 2.75M 0.26 2.9
128 2.8M 15.5M 0.14 1.45

Refinement Vertices Cells hmin hmax

1 99K 479K 0.64 11.4
2 123K 613K 0.30 11.4
3 275K 1.5M 0.14 11.4
4 1.3M 7.7M 0.07 11.4

Table 6.1 Mesh statistics (number of vertices, cells, and minimal and maximal cell
sizes) for the (left) uniformly refined and (right) adaptively refined mesh sequences.
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