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SUMMARY

An overview of benchmark computations for 2D and 3D laminar flows around a
cylinder is given, which have been defined for a comparison of different solution
approaches for the incompressible Navier-Stokes equations developed within the
Priority Research Programme. The exact definitions of the benchmarks are re-
capitulated and the numerical schemes and computers employed by the various
participating groups are summarized. A detailed evaluation of the results provided
is given, also including a comparison with a reference experiment. The principal
purpose of the benchmarks is discussed and some general conclusions which can be
drawn from the results are formulated.

1. INTRODUCTION

Under the DFG Priority Research Program “Flow Simulation on High Performance Com-
puters” solution methods for various flow problems have been developed with considerable
success. In many cases, the computing times are still very long and, because of a lack of
storage capacity and insufficient resolution, the agreement between the computed results
and experimental data is - even for laminar flows - only qualitative in nature. If numer-
ical solutions are to play a similar role to wind tunnels, they have to provide the same
accuracy as measurements, in particular in the prediction of the overall forces.

Several new techniques such as “unstructured grids”, “multigrid”, “operator splitting”,
“domain decomposition” and “mesh adaptation” have been used in order to improve
the performance of numerical methods. To facilitate the comparison of these solution
approaches, a set of benchmark problems has been defined and all participants of the
Priority Research Program working on incompressible flows have been invited to submit
their solutions. This paper presents the results of these computations contributed by
altogether 17 research groups, 10 from within of the Priority Research Program and 7
from outside. The major purpose of the benchmark is to establish, whether constructive
conclusions can be drawn from a comparison of these results so that the solutions can be
improved. It is not the aim to come to the conclusion that a particular solution A is better
than another solution B; the intention is rather to determine whether and why certain
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approaches are superior to others. The benchmark is particularly meant to stimulate
future work.

In the first step, only incompressible laminar test cases in two and three dimensions have
been selected which are not too complicated, but still contain most difficulties represen-
tative of industrial flows in this regime. In particular, characteristic quantities such as
drag and lift coefficients have to be computed in order to measure the ability to produce
quantitatively accurate results. This benchmark aims to develop objective criteria for the
evaluation of the different algorithmic approaches. For this purpose, the participants have
been asked to submit a fairly complete account of their computational results together
with detailed information about the discretization and solution methods used. As a result
it should be possible, at least for this particular class of flows, to distinguish between “ef-
ficient” and “less efficient” solution approaches. After this benchmark has been proved to
be successful it will be extended to include also certain turbulent and compressible flows.

It is particularly hoped that this benchmark will provide the basis for reaching deci-
sive answers to the following questions which are currently the subject of controversial
discussion:

1. Is it possible to calculate incompressible (laminar) flows accurately and efficiently by
methods based on explicitly advancing momentum?

2. Can one construct an efficient solver for incompressible flow without employing multi-
grid components, at least for the pressure Poisson equation?

3. Do conventional finite difference methods have advantages over new finite element or
finite volume techniques?

4. Can steady-state solutions be efficiently computed by pseudo-time-stepping techniques?

5. Is a low-order treatment of the convective term competitive, possibly for smaller
Reynolds numbers?

6. What is the “best” strategy for time stepping: fully coupled iteration or operator
splitting (pressure correction scheme)?

7. Does it pay to use higher order discretizations in space or time?

8. What is the potential of using unstructured grids?

9. What is the potential of a posteriori grid adaptation and time step selection in flow
computations?

10. What is the “best” approach to handle the nonlinearity: quasi-Newton iteration or
nonlinear multigrid?

These questions appear to be of vital importance in the construction of efficient and
reliable solvers, particularly in three space dimensions. Everybody who is extensively
consuming computer resources for numerical flow simulation should be interested.

The authors have tried their best in presenting and evaluating the contributed results
in as much detail as possible and hope that all participants of the benchmark will find
themselves correctly quoted.
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2. DEFINITION OF TEST CASES

This section gives a brief summary of the definitions of the test cases for the benchmark
computations, including precise definitions of the quantities which had to be computed
and also some additional instructions which were given to the participants.

2.1 Fluid Properties

The fluid properties are identical for all test cases. An incompressible Newtonian fluid is
considered for which the conservation equations of mass and momentum are
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The notations are time t, cartesian coordinates (x1, x2, x3) = (x, y, z), pressure P and
velocity components (U1, U2, U3) = (U, V,W ). The kinematic viscosity is defined as ν =
10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3.

2.2 2D Cases

For the 2D test cases the flow around a cylinder with circular cross–section is considered.
The geometry and the boundary conditions are indicated in Fig. 1. For all test cases the
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Figure 1: Geometry of 2D test cases with boundary conditions

outflow condition can be chosen by the user.

Some definitions are introduced to specify the values which have to be computed. H =
0.41 m is the channel height and D = 0.1 m is the cylinder diameter. The Reynolds num-
ber is defined by Re = UD/ν with the mean velocity U(t) = 2U(0, H/2, t)/3. The drag
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and lift forces are

FD =
∫

S
(ρν

∂vt

∂n
ny − Pnx) dS , FL = −

∫

S
(ρν

∂vt

∂n
nx + Pny) dS

with the following notations: circle S, normal vector n on S with x-component nx and
y-component ny, tangential velocity vt on S and tangent vector t = (ny,−nx). The drag
and lift coefficients are

cD =
2Fw

ρU
2

D
, cL =

2Fa

ρU
2

D

The Strouhal number is defined as St = Df/U , where f is the frequency of separation.
The length of recirculation is La = xr −xe, where xe = 0.25 is the x-coordinate of the end
of the cylinder and xr is the x-coordinate of the end of the recirculation area. As a further
reference value the pressure difference ∆P = ∆P (t) = P (xa, ya, t)−P (xe, ye, t) is defined,
with the front and end point of the cylinder (xa, ya) = (0.15, 0.2) and (xe, ye) = (0.25, 0.2),
respectively.

a) Test case 2D-1 (steady):

The inflow condition is

U(0, y) = 4Umy(H − y)/H2, V = 0

with Um = 0.3 m/s, yielding the Reynolds number Re = 20. The following quantities
should be computed: drag coefficient cD, lift coefficient cL, length of recirculation zone
La and pressure difference ∆P .

b) Test case 2D-2 (unsteady):

The inflow condition is

U(0, y, t) = 4Umy(H − y)/H2, V = 0

with Um = 1.5 m/s, yielding the Reynolds number Re = 100. The following quantities
should be computed: drag coefficient cD, lift coefficient cL and pressure difference ∆P as
functions of time for one period [t0, t0 + 1/f ] (with f = f(cL)), maximum drag coefficient
cDmax, maximum lift coefficient cLmax, Strouhal number St and pressure difference ∆P (t)
at t = t0 +1/2f . The initial data (t = t0) should correspond to the flow state with cLmax.

c) Test case 2D-3 (unsteady):

The inflow condition is

U(0, y, t) = 4Umy(H − y) sin(πt/8)/H2, V = 0

with Um = 1.5 m/s, and the time interval is 0 ≤ t ≤ 8 s. This gives a time varying
Reynolds number between 0 ≤ Re(t) ≤ 100. The initial data (t = 0) are U = V = P = 0.
The following quantities should be computed: drag coefficient cD, lift coefficient cL and
pressure difference ∆P as functions of time for 0 ≤ t ≤ 8 s, maximum drag coefficient
cDmax, maximum lift coefficient cLmax, pressure difference ∆P (t) at t = 8 s.

4



2.3 3D Cases

For the 3D test cases the flows around a cylinder with square and circular cross–sections
are considered. The problem configurations and boundary conditions are illustrated in
Figs. 2 and 3. The outflow condition can be selected by the user. Some definitions are
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Figure 2: Configuration and boundary conditions for flow around a cylinder
with square cross–section.

introduced to specify the values which have to be computed. The height and width of the
channel is H = 0.41 m, and the side length and diameter of the cylinder are D = 0.1 m.
The characteristic velocity is U(t) = 4U(0, H/2, H/2, t)/9, and the Reynolds number is
defined by Re = UD/ν. The drag and lift forces are

FD =
∫

S
(ρν

∂vt

∂n
ny − pnx) dS , FL = −

∫

S
(ρν

∂vt

∂n
nx + Pny) dS

with the following notations: surface of cylinder S, normal vector n on S with x-component
nx and y-component ny, tangential velocity vt on S and tangent vector t = (ny,−nx, 0).
The drag and lift coefficients are

cD =
2Fw

ρU
2

DH
, cL =

2Fa

ρU
2

DH

The Strouhal number is St = Df/U with the frequency of separation f , and a pressure
difference is defined by ∆P = ∆P (t) = P (xa, ya, za, t) − P (xe, ye, ze, t) with coordinates
(xa, ya, za) = (0.45, 0.20, 0.205) and (xe, ye, ze) = (0.55, 0.20, 0.205).
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Figure 3: Configuration and boundary conditions for flow around a cylinder
with circular cross–section.

a) Test cases 3D-1Q and 3D-1Z (steady):

The inflow condition is

U(0, y, z) = 16Umyz(H − y)(H − z)/H4, V = W = 0

with Um = 0.45 m/s, yielding the Reynolds number Re = 20. The following quantities
should be computed: drag coefficient cD, lift coefficient cL and pressure difference ∆P .

b) Test cases 3D-2Q and 3D-2Z (unsteady):

The inflow condition is

U(0, y, z, t) = 16Umyz(H − y)(H − z)/H4, V = W = 0

with Um = 2.25 m/s, yielding the Reynolds number Re = 100. The following quantities
should be computed: drag coefficient cD, lift coefficient cL and pressure difference ∆P
as functions of time for three periods [t0, t0 + 3/f ] (with f = f(cL)), maximum drag
coefficient cDmax, maximum lift coefficient cLmax and Strouhal number St. The initial
data (t = t0) are arbitrary, however, for fully developed flow.

c) Test cases 3D-3Q and 3D-3Z (unsteady):

The inflow condition is

U(0, y, z, t) = 16Umyz(H − y)(H − z) sin(πt/8)/H4, V = W = 0
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with Um = 2.25 m/s. The time interval is 0 ≤ t ≤ 8 s. This yields a time-varying
Reynolds number between 0 ≤ Re(t) ≤ 100. The initial data (t = 0) are U = V = P = 0.
The following quantities should be computed: drag coefficient cD, lift coefficient cL and
pressure difference ∆P as functions of time for 0 ≤ t ≤ 8 s, maximum drag coefficient
cDmax, maximum lift coefficient cLmax and pressure difference ∆P (t) for t = 8 s.

2.4 Instructions for Computations

The following additional instructions concerning the computations were given to the par-
ticipants:

• In the case of the steady calculations 2D-1, 3D-1Q and 3D-1Z, the results have to
be presented for three successively coarsened meshes (notation: h1, h2 and h3 with
finest level h1).

• Any iterative process used for the steady computations should start from zero values.

• In the case of the unsteady calculations 2D-2, 2D-3, 3D-2Q, 3D-2Z, 3D-3Q and 3D-
3Z, the results have to be presented for three successively coarsened meshes (notation
as in the steady case) with a finest time discretization (notation: ∆t1) and also for
two successively coarsened time discretizations (notation: ∆t2 and ∆t3) together
with the finest mesh h1.

• The finest spatial mesh h1, the finest time discretization ∆t1 and the coarsening
strategies can be chosen by the user.

• The convergence criteria for the iterative method in the steady case and for each
time step in the unsteady cases (in connection with implicit methods) can be chosen
by the user.

• The outflow condition can be chosen by the user.

• If possible, the calculations should be performed on a workstation. For all computers
used, the theoretical peak performance and the MFlop rate for the LINPACK1000-
benchmark (in 64-bit arithmetic) should be provided. The LINPACK1000 value
should be obtained with the same compiler options as used for the flow solver.

• In addition to the benchmark results a description of the solution methods should
be given.

3. PARTICIPATING GROUPS AND NUMERICAL APPROACHES

In Table 1 the different groups that provided results for the present benchmark compu-
tation are listed, and the individual test cases for which results were provided are also
indicated. In Table 2 the numerical methods and implementations of the participating
groups are summarized. Only the major features which are the most important for the
evaluation of the results are given. The following abbreviations are used in the table:
Finite difference method (FD), Finite volume method (FV), Finite element method (FE),
Navier-Stokes equations (NS) and Multigrid method (MG). PEAK means the peak per-
formance in MFlops and LINP the Linpack1000 MFlop-rate.
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Table 1: Participating groups and test cases for which results were provided.
The p indicates that only parts of the required results for the corresponding test
case were given, and x indicates a full set of results

2D 3D
Participants/test cases 1 2 3 1Q 1Z 2Q 2Z 3Q 3Z

1) RWTH Aachen, Aerodynamisches Institut x x x x x p p p
E. Krause, M. Weimer, M. Meinke

2) ASC GmbH (TASCflow) x
F. Menter, G. Scheuerer

3) TU Berlin Inst. für Strömungsmechanik p p p p p p p p p
F. Thiele, L. Xue

4) TU Chemnitz, Fakultät für Mathematik x x x
A. Meyer, S. Meinel, U. Groh, M. Pester

5) Daimler-Benz AG (STAR-CD) p
F. Klimetzek

6) Univ. Duisburg, Inst. für Verbrennung und Gasdyn. x x p p p p p p p
D. Hänel, O. Filippova

7) Univ. Erlangen, Lehrstuhl für Strömungsmechanik x x x x x x x
F. Durst, M. Schäfer, K. Wechsler

8) Univ. Freiburg, Inst. für Angewandte Mathematik x x x x x p p
E. Bänsch, M. Schrul

9) Univ. Hamburg, Inst. für Schiffbau x x x x p
M. Perić, S. Muzaferija, V. Seidl

10) Univ. Heidelberg, Inst. für Angewandte Mathematik x x x x x x x x x
R. Rannacher, S. Turek

11) TU Karlsruhe, Inst. für Hydromechanik x p
W. Rodi, M. Pourquie

12) Univ. Karlsruhe, Inst. für Therm. Strömungsmasch. x
C.-H. Rexroth, S. Wittig

13) Kyoto Inst. of Tech., Dept. of Mech. and Syst. Eng. x x
N. Satofuka, H. Tokunaga, H. Hosomi

14) Univ. Magdeburg, Inst. für Analysis und Numerik x x
L. Tobiska, V. John, U. Risch, F. Schieweck

15) TU München, Inst. für Informatik x x x x p p
C. Zenger, M. Griebel, R. Kreißl, M. Rykaschewski

16) UBW München, Inst. f. Strömungsmech. u. Aerodyn. x p
H. Wengle, M. Manhart

17) Univ. Stuttgart, Inst. für Computeranwendungen x
G. Wittum, H. Rentz-Reichert
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Table 2: Numerical methods and implementation of participating groups

Space discretization Time discretization Solver Implementation

1 FD, blockstructured fully implicit 2nd ord. artificial compressibility serial
non-staggered equidistant expl. 5-step Runge-Kutta Fujitsu VPP500
QUICK upwinding FAS-MG (steady) 1600 PEAK

line-Jacobi (unsteady)
2 FV, blockstructured implicit Euler ILU with algebraic MG serial

2nd ord. upwindig equidistant for linear problems IBM RS6000/370
37 LINP

3 FV, blockstructured fully implicit 2nd ord. stream function form serial
non-staggered equidistant fixed-point iteration SGI-Indigo2
QUICK upwinding ILU for lin. subproblems 75 PEAK

parallel
Cray T3D/16
16x88 LINP

4 FE, blockstructured Projection 2 (Gresho) pseudo time step (steady) parallel
4Q1-Q1 Crank-Nicolson (diff.) PCG for lin. subproblems GC/PP32
BTD stabilisation explicit Euler (conv.) hierarch. preconditioning 32x13.9 LINP

adaptive
5a FV, unstructured STARCD software pressure correction serial

1st ord. upwind HP 735
13 LINP

5b FV, unstructured STARCD software pressure correction serial
CDS HP 735

13 LINP
6 Lattice BGK explicit gaskinetic solution of serial

equidistant orth. grid equidistant BGK-Boltzmann equation HP735
evol. of distribution funct. 13 LINP

7a FV, blockstructured Crank-Nicolson nonlinear MG serial
non-staggered equidistant SIMPLE smoothing HP735
CDS with def. corr. ILU for lin. subproblems 13 LINP

7b FV, blockstructured fully implicit 2nd ord. nonlinear MG parallel
non-staggered equidistant SIMPLE smoothing GC/PP128,32,8
CDS with def. corr. ILU for lin. subproblems 128x13.9 LINP

8a FE, unstructured 2nd order fract. step nonlinear GMRES serial
P2-P1 (Taylor-Hood) operator splitting PCG for lin. subproblems SGI R4000
CDS equidistant 8.3 LINP

8b FE, unstructured 2nd order fract. step nonlinear GMRES serial
P2-P1 (Taylor-Hood) operator splitting PCG for lin. subproblems SGI R4400
CDS equidistant 13.2 LINP
adaptive refinement IBM RS6000/590

58 LINP
9a FV, blockstructured fully implicit 2nd ord. SIMPLE serial

CDS equidistant ILU for lin. subproblems IBM RS6000/250
34 LINP

9b FV, unstructured fully implicit 2nd ord. SIMPLE serial
CDS equidistant ILU-CGSTAB for lin. IBM RS6000/590

subproblems 90 LINP
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Table 2: (continued)

Space discretization Time discretization Solver Implementation

10 FE, blockstructured 2nd order fract. step fixed-point iteration serial
Q1(rot)-Q0 projection method MG for lin. NS with IBM RS6000/590
adaptive upwind adaptive Vanka smoother (steady) 90 LINP

MG for scalar lin.
subproblems (unsteady)

11 FV, structured explicit SIMPLE serial
CDS with momentum 3rd ord. Runge-Kutta ILU for lin. subprobl. SNI S600/20
interpolation equidistant 5000 PEAK

12 FV, unstructured SIMPLEC serial
non-staggered – ILU-BICGSTAB for lin. SUN SS10
adapt. 2nd ord. DISC subproblems 5.5 LINP
deferred correction

13a FD, structured explicit Euler stream function form serial
equidistant pseudo time step IBM RS6000/590

SOR for lin. subprobl. 90 LINP
13b FD, structured explicit 4th order stream function form serial

Runge-Kutta-Gill SOR for lin. subprobl. IBM RS6000/590
equidistant 90 LINP

14a FE, blockstructured nonlinear MG serial
P1-P0 Vanka smoother HP737/125
(Crouzeix-Raviart) – 6.6 LINP
1st order upwind

14b FE, blockstructured fixed-point iteration parallel
Q1(rot)-Q0 MG for lin. NS with GC/PP96
1st order upwind Vanka smoother 96x13.9 LINP

14c FE, unstructured BDF(2), equidistant fixed-point iteration parallel
P1-P0 (Cr.-Rav.) GMRES for GC/PP24
Samarskij upwind pressure Schur-complement 24x13.9 LINP
adaptive refinement lin. MG for velocity

15a FD, structured explicit Euler SOR for pressure serial
staggered, orthogonal adaptive HP720
CDS/UDS flux-blend. 7.4 LINP

15b FD, structured explicit Euler SOR for pressure parallel
staggered, orthogonal adaptive HP720 cluster
CDS/UDS flux blend. 8x7.4 LINP

16 FV, blockstructured explicit pressure correction serial
CDS 2nd ord. leap-frog Gauss-Seidel for SGI Indigo

time-lagged diff. lin. subproblems 9.6 LINP
Convex C3820
19.2 LINP

17 FV, unstructured – fixed-point iteration serial
adaptive upwind MG for lin. NS SGI R4400

BILUβ smoother 8.3 LINP
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4. RESULTS

The results of the benchmark computations are summarized in Tables 3-11. The number
in the first column refers to the methods given in Table 2. The last column contains the
performance of the computer used (as given by the contributors), either the Linpack1000
Mflop rate (LINP) or the peak performance (PEAK), which of course should be taken into
account when comparing the different computing times. The column ”unknowns” refers to
the total number, i.e. the sum of unknowns for all velocity components and pressure. The
CPU timings are all given in seconds. In the last row of each table estimated intervals for
the “exact” results are indicated (as suggested by the authors on the basis of the obtained
solutions).

We remark that for the 2D time-periodic test case 2D-2 also measurements were carried
out, where the Strouhal number and time-averaged velocity profiles at different locations
along the channel are determined experimentally. However, a direct comparison with
the numerical results in Table 4 is problematic, because owing to the short distance
between the inlet and the cylinder for the computations, the flow conditions in front of
the cylinder are slightly different. To give some comparison with method 7a (see Table 2),
a computation with a longer distance between the inlet and cylinder was carried out. The
experimentally obtained Strouhal number of St = 0.287 ± 0.003 agrees very well with
the numerically computed value of St = 0.289. A comparison of time-averaged velocity
profiles can be seen in Fig. 4, which also are in fairly good agreement.

Figure 4: Comparison of experimental and numerical time-averaged velocity
profiles for test case 2D-2 with extended inlet part.
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Table 3: Results for steady test case 2D-1

Unknowns cD cL La ∆P Mem. CPU time MFlop rate

1 200607 5.5567 0.0106 0.0845 0.1172 15 788 1600 PEAK
51159 5.5567 0.0106 0.0843 0.1172 4 273
13299 5.5661 0.0105 0.0835 0.1169 1 144

3a 10800 5.6000 0.0120 0.0720 0.1180 2.5 121 75 PEAK

4 297472 5.5678 0.0105 0.0847 0.1179 137 31000 445 LINP
75008 5.5606 0.0107 0.0849 0.1184 73 8000
19008 5.5528 0.0118 0.0857 0.1199 57 2000

6 1314720 5.8190 0.0110 0.0870 0.1230 40 80374 13 LINP
332640 5.7740 0.0030 0.0830 0.1230 10 10461
85140 5.7890 -0.0060 0.0870 0.1230 2.6 1262

7a 294912 5.5846 0.0106 0.0846 0.1176 75 192 13 LINP
73728 5.5852 0.0105 0.0845 0.1176 19 47
18432 5.5755 0.0102 0.0842 0.1175 5 13

8a 20487 5.5760 0.0110 0.0848 0.1170 9.0 2574 8.3 LINP
6297 5.5710 0.0130 0.0846 0.1160 2.9 362
2298 5.4450 0.0200 0.0810 0.1110 1.3 109

9a 240000 5.5803 0.0106 0.0847 0.1175 53 9200 34 LINP
60000 5.5786 0.0106 0.0847 0.1173 10 1400
15000 5.5612 0.0109 0.0848 0.1166 2.5 200

10 2665728 5.5755 0.0106 0.0780 0.1173 350 677 90 LINP
667264 5.5718 0.0105 0.0770 0.1169 89 169
167232 5.5657 0.0102 0.0730 0.1161 22 52
42016 5.5608 0.0091 0.0660 0.1139 5 18

12 32592 5.5069 0.0132 0.0830 0.1155 18 1796 5.5 LINP
26970 5.5125 0.0056 0.0827 0.1154 15 1099
22212 5.6026 -0.0031 0.0815 0.1167 13 3437

13a 25410 5.6145 0.0159 0.8315 3.0002 4 14203 90 LINP
12738 5.6114 0.0169 0.8224 2.9943 2 3018
6562 5.7377 0.0514 0.8107 3.2277 1

14a 3077504 5.6323 0.0137 0.0782 0.1159 214 15300 6.6 LINP
768704 5.6382 0.0102 0.0775 0.1156 53 5490
191840 5.5919 -0.0009 0.0750 0.1143 13 2800

14b 30775296 5.5902 0.0108 0.0853 0.1174 5340 1534 1334 LINP
7695104 5.6010 0.0110 0.0844 0.1174 1341 400
1922432 5.6227 0.0113 0.0833 0.1172 338 119

14c 797010 5.5708 0.0167 0.0837 0.1168 460 8000 334 LINP
363457 5.5598 0.0142 0.0835 0.1166 230 3290
176396 5.5106 0.0046 0.0835 0.1150 110 2560

15a 432960 5.5602 0.0329 0.0730 0.1054 4.4 179986 7.4 LINP
108240 5.6300 0.0751 0.0720 0.1037 1.1 13593
27060 5.7769 0.2085 0.0680 0.0998 0.3 688

17 111342 5.5610 0.0107 0.1170 87 2568 8.3 LINP
60804 5.5520 0.0102 0.1168 47 1092
19416 5.5160 0.0099 0.1158 15 373

lower bound 5.5700 0.0104 0.0842 0.1172
upper bound 5.5900 0.0110 0.0852 0.1176
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Table 4: Results for time–periodic test case 2D-2

Unknowns
Space Time cDmax cLmax St ∆P Mem. CPU time MFlop rate

1 267476 67 3.2224 0.9672 0.2995 2.4814 — — 1600 PEAK
267476 34 3.2030 0.9223 0.2941 2.4664 — —
267476 18 3.1605 0.8026 0.2901 2.4466 — —
68212 67 3.2171 0.9591 0.2995 2.5009 — —
17732 68 3.2168 0.9295 0.2979 2.5573 — —

3 12800 34 3.2200 0.9720 0.2960 2.4700 2.5 789 75 PEAK

4 297472 670 3.2460 0.9840 0.2985 2.4900 137 6600 445 LINP
297472 338 3.2710 0.9800 0.2959 2.4870 137 3400
297472 172 3.3200 0.9720 0.2907 2.4810 137 1700
75008 670 3.2410 0.9910 0.2985 2.5020 73 2350
19008 674 3.2320 1.0260 0.2967 2.5320 57 1350

6 332640 12000 4.1210 1.6120 0.3330 3.1420 10 10086 13 LINP
85140 6000 4.7330 2.0600 0.3380 3.4300 2.6 1259

7a 294912 36 3.2358 1.0069 0.3003 2.4892 75 6167 13 LINP
294912 19 3.2356 1.0000 0.2973 2.4871 75 6391
294912 10 3.2152 0.9028 0.2881 2.4715 75 4994
73728 36 3.2443 1.0261 0.2994 2.4929 19 1946
18432 36 3.2706 1.0695 0.2968 2.5035 5 445

8a 29084 66 3.2240 1.0060 0.3020 2.4860 11 4992 8.3 LINP
29084 33 3.2470 1.0740 0.3030 2.5010 11 3777
29084 16 3.2900 1.2500 0.3130 2.5700 11 3217
8764 66 3.1740 0.9640 0.3000 2.4630 3.6 1000
2978 70 2.8920 0.5540 0.2890 2.2870 1.5 339

9a 240000 5000 3.2267 0.9862 0.3017 2.4833 53 32500 34 LINP
60000 10000 3.2232 0.9830 0.3012 2.4773 10 8550
60000 5000 3.2232 0.9832 0.3012 2.4773 10 4500
60000 2500 3.2232 0.9836 0.3012 2.4773 10 3400
15000 5000 3.2058 0.9651 0.2994 2.4587 2.5 3240

10 667264 612 3.2314 0.9999 0.2973 2.4707 128 8545 90 LINP
667264 204 3.2351 1.0123 0.2957 2.4734 128 2850
667264 68 3.2771 1.1205 0.2997 2.4961 128 1065
167232 188 3.2498 1.0081 0.2927 2.4410 32 655
42016 164 3.2970 0.8492 0.2713 2.3423 8 147

13b 25410 6755 3.1822 1.0692 0.2960 2.6066 5.1 44710 90 LINP
25410 3877 3.1895 1.0883 0.2968 2.6057 4.8 27175
25410 1678 3.2043 1.1268 0.2979 2.5307 4.7
12738 6799 3.1945 1.1233 0.2941 2.6140 2.9 13045
6562 7223 3.1317 1.2961 0.2768 3.0253 1.8

15a 432960 7790 3.0804 0.7256 0.2778 2.1330 4.4 108844 7.4 LINP
108240 4003 3.1677 0.6880 0.2646 2.0954 1.1 34876
108240 3859 3.1096 0.8249 0.2841 2.1105 1.1 58003
27060 1985 3.2544 0.5658 0.2336 1.9727 0.3 3796
27060 1670 3.1759 0.7656 0.2740 1.9961 0.3 4188

lower bound 3.2200 0.9900 0.2950 2.4600
upper bound 3.2400 1.0100 0.3050 2.5000
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Table 5: Results for unsteady test case 2D-3

Unknowns
Space Time cDmax cLmax ∆P Mem. CPU time MFlop rate

1 267476 400 2.9387 0.3504 -0.1048 — — 1600 PEAK
68212 800 2.9459 0.4492 -0.1057 — —
17732 800 2.9532 0.3908 -0.1007 — —

3 12800 800 2.9600 0.4300 -0.0976 2.5 7567 75 PEAK

4 297472 16000 2.9715 0.4806 -0.1101 137 160000 445 LINP
297472 8000 2.9984 0.4794 -0.1035 137 88000
297472 4000 3.0508 0.4750 -0.1018 137 48000
75008 16000 2.9660 0.4903 -0.1098 73 47000
19008 16000 2.9551 0.5228 -0.1061 57 31000

6 332640 36960 3.8420 1.1100 0.0200 10 19772 13 LINP
85140 9460 4.5310 1.7610 0.0090 2.6 2511

7a 294912 800 2.9520 0.4793 -0.1086 75 43119 13 LINP
294912 400 2.9520 0.4787 -0.1016 75 29165
294912 200 2.9512 0.4021 -0.1047 75 22141
73728 800 2.9511 0.4711 -0.0995 19 10003
18432 800 2.9461 0.4638 -0.1024 5 2847

8a 21508 1600 2.9200 0.4910 -0.1110 8 44028 8.3 LINP
21508 800 2.9210 0.5390 -0.1140 8 31481
21508 400 2.9230 0.7250 -0.1160 8 25512
5822 1600 2.8160 0.3560 -0.1060 2.5 9294
1705 1600 2.7220 0.0055 -0.1220 1.1 2109

9a 240000 5000 2.9505 0.4539 -0.1095 53 220000 34 LINP
60000 10000 2.9483 0.4651 -0.1062 10 92000
60000 5000 2.9483 0.4630 -0.1062 10 64000
60000 2500 2.9482 0.4575 -0.1039 10 38000
15000 5000 2.9397 0.4349 -0.1095 2.5 22000

10 667264 4540 2.9538 0.4782 -0.1053 128 62734 90 LINP
667264 1612 2.9566 0.5533 -0.1029 128 22431
667264 704 3.0650 0.8443 -0.1090 128 11832
167232 4068 2.9776 0.4768 -0.1097 32 14005
42016 2908 3.0949 0.3223 -0.0951 8 2532

14c 638880 800 3.0599 0.6326 -0.1100 550 740000 334 LINP
858848 800 3.1441 0.5266 -0.1142 850 660000 668 LINP

15a 432960 9060 2.8916 0.2649 -0.0987 4.4 237397 7.4 LINP
108240 4070 2.8927 0.3171 -0.0956 1.1 29140
108240 4020 3.0134 0.2921 -0.0945 1.1 25697
27060 2857 3.1817 0.2702 -0.1138 0.3 3371
27060 2013 3.0098 0.3973 -0.0941 0.3 2541

lower bound 2.9300 0.4700 -0.1150
upper bound 2.9700 0.4900 -0.1050
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Table 6: Results for steady test case 3D-1Q

Unknowns cD cL ∆P Mem. CPU time MFlop rate

1 2530836 7.6415 0.0673 0.1740 251 1975 5000 PEAK
657492 7.6029 0.0665 0.1738 72 702 1600 PEAK

3 634872 7.6100 0.0642 0.1730 72 1935 1408 LINP

5a 1472000 7.9200 0.0645 0.1751 121 127984 13 LINP
184000 8.0400 0.0642 0.1722 17 3805
23000 7.6600 0.0720 0.1609 3 73

5b 1472000 7.4400 0.0615 0.1721
184000 7.2800 0.0582 0.1673
23000 6.7400 0.0615 0.1509

6 6303750 8.0930 0.0700 43 168657 13 LINP

7a 454656 7.5395 0.0797 0.1715 115 9525 13 LINP
56832 7.1280 0.0861 0.1616 13 1280
7104 6.4590 0.0988 0.1385 3 88

8a 362613 7.6480 0.0670 0.1751 126 46970 13.2 LINP
73262 7.6530 0.0590 0.1766 28 6590

8b 97822 7.6340 0.0660 0.1742 38 8648 13.2 LINP

10 6094976 7.6148 0.0600 0.1729 690 8244 90 LINP
768544 7.5622 0.0503 0.1683 88 1267
97736 7.3069 0.0348 0.1590 10 380

11 1425600 7.7583 0.0511 0.1744 100 2538 5000 PEAK
460800 7.7673 0.0406 0.1721 38 536
128000 7.2372 0.0602 0.1611 17 86

15b 6724000 6.0770 0.0859 0.0825 64 10600 52 LINP
1681000 5.5060 0.1420 0.0796 16 1400

16 2007040 7.3700 0.0619 0.1720 25 45000 19.2 LINP
405503 7.2500 0.0549 0.1680 6 11000 9.6 LINP

lower bound 7.5000 0.0600 0.1720
upper bound 7.7000 0.0800 0.1800
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Table 7: Results for steady test case 3D-1Z

Unknowns cD cL ∆P Mem. CPU time MFlop rate

1 2426292 6.1295 0.0093 0.1693 233 2097 5000 PEAK
630564 6.1230 0.0095 0.1680 71 1238 1600 PEAK

2 555000 6.1440 0.0074 0.1604 122 8731 26 LINP
276800 5.8600 0.0042 0.1616 67 6094

3 608496 6.1600 0.0095 0.1690 74 4150 1408 LINP

6 6303750 6.2330 -0.0040 43 221706 13 LINP

7b 12582912 6.1932 0.0093 0.1709 3571 2630 1779 LINP
1572864 6.1868 0.0092 0.1703 518 1120 445 LINP
196608 6.1366 0.0098 0.1673 71 460 111 LINP

8a 362613 6.1430 0.0084 0.1694 126 51280 13.2 LINP
73262 6.0990 0.0067 0.1695 28 7178

9 2355712 6.1800 -0.0010 0.1691 62000 90 LINP
753664 6.1720 0.0090 0.1680 6000
94208 6.1310 0.0100 0.1605 950

10 6116608 6.1043 0.0079 0.1672 700 8440 90 LINP
771392 5.9731 0.0059 0.1605 89 1466
98128 5.8431 0.0061 0.1482 11 290

lower bound 6.0500 0.0080 0.1650
upper bound 6.2500 0.0100 0.1750

Table 8: Results for time–periodic test case 3D-2Q

Unknowns
Space Time cDmax cLmax St Mem. CPU time MFlop rate

3 634872 188 4.3170 0.0495 0.3130 74 3368 1408 LINP
634872 95 4.3170 0.0495 0.3210 74 2754

6 6303750 18000 4.5870 -0.0050 – 43 168657 13 LINP

10 6094976 142 4.3923 0.0146 0.2777 840 29428 90 LINP
6094976 124 4.3932 0.0191 0.2806 840 29945
6094976 84 4.4071 0.0896 0.2400 840 30372
768544 – 4.4819 0.0036 – 105 –
97736 – 4.5529 -0.0080 – 13 –

16 2007040 1726 4.6738 0.0389 0.3488 25 20040 19.2 LINP
405503 833 4.8808 0.0392 0.3610 6 10020 9.6 LINP

lower bound ? ? ?
upper bound ? ? ?
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Table 9: Results for time–periodic test case 3D-2Z

Unknowns
Space Time cDmax cLmax St Mem. CPU time MFlop rate

1 630564 177 3.3018 -0.0014 0.3390 78 26115 1600 PEAK

3 608496 – 3.2250 -0.0142 – 74 1408 LINP
608496 – 3.2250 -0.0142 –

6 6303750 18000 3.7920 -0.0210 – 43 142646 13 LINP

7b 12582912 93 3.3052 -0.0105 0.3409 3571 24459 1779 LINP
1572864 378 3.3057 -0.0118 0.3172 518 9487 445 LINP
1572864 261 3.3054 -0.0118 0.2250 518 2740 445 LINP
1572864 126 3.3050 -0.0018 0.2400 518 1956 445 LINP
196608 – 3.3121 -0.0150 – 71 – 111 LINP

9b 2355712 3.2968 90 LINP
753664 3.3254
94208 3.3284

10 6116608 128 3.2950 -0.0081 0.2912 840 31145 90 LINP
6116608 120 3.2970 -0.0025 0.2830 840 31730
6116608 80 3.3200 0.0480 0.2684 840 21586
771392 68 3.3801 0.0086 0.2343 105 2163
98128 – 3.4593 -0.0102 – 13 –

lower bound 3.2900 -0.0110 0.2900
upper bound 3.3100 -0.0080 0.3500

Table 10: Results for unsteady test case 3D-3Q

Unknowns
Space Time cDmax cLmax ∆P Mem. CPU time MFlop rate

1 657492 800 4.3804 0.0308 -0.1392 78 121960 1600 PEAK

3 634872 1600 4.3030 0.0476 -0.1361 74 51253 1408 LINP
634872 800 4.3020 0.0473 -0.1354 74 37241

6 6303750 18000 4.8680 0.0310 43 168657 13 LINP

8a 362613 1000 4.5530 0.0137 -0.1436 126 398000 58 LINP

8b 228451 1000 4.5080 0.0432 -0.1427 105 915000 13.2 LINP

10 6094976 772 4.4086 0.0133 -0.1264 840 164749 90 LINP
6094976 392 4.5698 0.0262 -0.1213 840 89679
6094976 82 5.5709 0.1230 0.0183 840 35600
768544 696 4.5223 0.0061 -0.1113 105 22747
97736 588 4.5820 0.0033 -0.0718 13 3031

11 3712800 7720 4.3400 0.0500 -0.0810 105 5711 5000 PEAK
1523200 7720 4.4000 0.0480 -0.1160 48 2741
352000 7720 4.3600 0.0680 -0.1090 18 706

lower bound 4.3000 0.0100 -0.1400
upper bound 4.5000 0.0500 -0.1200
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Table 11: Results for unsteady test case 3D-3Z

Unknowns
Space Time cDmax cLmax ∆P Mem. CPU time MFlop rate

1 630564 800 3.2826 0.0027 -0.1117 79 156460 1600 PEAK

3 608496 1600 3.2590 0.0026 -0.1072 74 76142 1408 LINP
608496 800 3.2590 0.0026 -0.1157 74 50764

6 6303750 18000 4.1600 0.0200 43 142646 13 LINP

7b 1572864 1600 3.3011 0.0026 -0.1102 518 149923 445 LINP
1572864 800 3.3008 0.0026 -0.1105 518 93055 445 LINP
1572864 400 3.3006 0.0026 -0.1107 518 62026 445 LINP
196608 1600 3.3053 0.0028 -0.1066 71 63057 111 LINP

8a 362613 1000 3.2340 0.0028 -0.1114 126 347000 58 LINP

8b 199802 1000 3.2120 0.0122 -0.1112 105 846000 13.2 LINP
98637 1000 3.2350 0.0123 -0.1114 39 243000

10 6116608 668 3.2802 0.0034 -0.0959 840 164837 90 LINP
6116608 272 3.3748 0.0360 -0.0603 840 77538
6116608 60 2.7312 0.0069 -0.0682 840 29742
771392 724 3.3323 0.0033 -0.0766 105 24745
98128 660 3.4200 0.0040 -0.0407 13 5687

lower bound 3.2000 0.0020 -0.0900
upper bound 3.3000 0.0040 -0.1100

5. DISCUSSION OF RESULTS

On the basis of the results obtained by these benchmark computations some conclusions
can be drawn. These have to be considered with care, as the provided results depend on
parameters which are not available for the authors of this report, e.g., design of the grids,
setting of stopping criteria, quality of implementation, etc.

For five of the ten questions above the answers seem to be clear:

1. In order to compute incompressible flows of the present type (laminar) accurately
and efficiently, one should use implicit methods. The step size restriction enforced by
explicit time stepping can render this approach highly inefficient, as the physical time
scale may be much larger than the maximum possible time step in the explicit algorithm.
This is obvious from the results for the stationary cases in 2D and 3D, and also for the
nonstationary cases in 2D. For the nonstationary cases in 3D only too few results on
apparently too coarse meshes have been provided, in order to draw clear conclusions.
This question requires further investigation.

2. Flow solvers based on conventional iterative methods on the linear subproblems have
on fine enough grids no chance against those employing suitable multigrid techniques. The
use of multigrid can allow computations on workstations (provided the problem fits into
the RAM) for which otherwise supercomputers would have to be used. In the submitted
solutions supercomputers (Fujitsu, SNI, CRAY) have mainly been used for their high
CPU power but not for their large storage capacities. For example, in test case 3D-3Z

18



(Table 11) the solutions 1 and 3 require with about 600,000 unknowns on supercomputers
significantly more CPU time than the solution 10 with the same number of unknowns on
a workstation.

3. The most efficient and accurate solutions are based either on finite element or finite
volume discretizations on contour adapted grids.

4. The computation of steady solutions by pseudo time-stepping techniques is inefficient
compared with using directly a quasi-Newton iteration as stationary solver.

5. For computing sensitive quantities such as drag and lift coefficients, higher order
treatment of the convective term is indispensable. The use of only first order upwinding
(or crude approximation of curved boundaries) does not lead to satisfactory accuracy even
on very fine meshes (several million unknowns in 2D).

For the remaining five questions the answers are not so clear. More test calculations will
be necessary to reach more decisive conclusions. The following preliminary interpretations
of the results obtained so far may become the subject of further discussion:

6. In computing nonstationary solutions, the use of operator splitting (pressure correction)
schemes tends to be superior to the more expensive fully coupled approach, but this may
depend on the problem as well as the quantity to be calculated (compare, e.g., for the test
case 2D-3 (Table 5), the solution 14c with 7a and 10). Further, as fully coupled methods
also use iterative correction within each time step (possibly adaptively controlled), the
distinction between fully coupled and operator splitting approach is not so clear.

7. The use of higher than second-order discretizations in space appears promising with
respect to accuracy, but there remains the question of how to solve efficiently the resulting
algebraic problems (see the results of 8 for all test cases). The results provided for this
benchmark are too sparse to allow a definite answer.

8. The most efficient solutions in this benchmark have been obtained on blockwise struc-
tured grids which are particularly suited for multigrid algorithms. There is no indication
that fully unstructured grids might be superior for this type of problem, particularly with
respect to solution efficiency (compare the CPU times reported for the solutions 7 and
9 in 2D). The winners may be hierarchically structured grids which allow local adaptive
mesh refinement together with optimal multigrid solution.

9. From the contributed solutions to this benchmark there is no indication that a-
posteriori grid adaptation in space is superior to good hand-made grids (see the results of
14c). This, however, may drastically change in the future, particularly in 3D. Intensive
development in this direction is currently in progress.
For nonstationary calculations, adaptive time step selection is advisible in order to achieve
reliability and efficiency (see the results of 10).

10. The treatment of the nonlinearity by nonlinear multigrid has no clear advantage over
the quasi-Newton iteration with multigrid for the linear subproblems (compare the results
of 7 with those of 10). Again, it is the extensive use of well-tuned multigrid (wherever in
the algorithm) which is decisive for the overall efficiency of the method.
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6. CONCLUDING REMARKS

The authors would like to add some final remarks to the report presented. Although, this
benchmark has been fairly successful as it has made possible some solidly based compar-
ison between various solution approaches, it still needs further development. Particularly
the following points are to be considered:

1. In the case 3D-3Z it should be the maximum absolute value of the lift which has to be
computed as cL may become negative.

2. In the nonstationary test cases further characteristic quantities (e.g., time averages,
pressure values, etc.) should be computed, as in some cases, by chance, “maximum values”
may be obtained with good accuracy even without capturing the general pattern of the
flow at all.

3. For the nonstationary 3D problems a higher Reynolds number should be considered,
since in the present case (Re = 100) the problem may be particularly hard as the flow
tends to become almost stationary.

Even in the laminar case, the chosen nonstationary 3D problems showed to be harder
than expected. In particular, it was apparently not possible to achieve reliable reference
solutions for the test cases 3D-2Q and 3D-2Z. Hence the benchmark has to be considered
as still open and everybody is invited to try again.
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