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1. General - Elliptic equations



Characterisation of linear, 2nd order PDEs
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It can be shown that for a linear PDE, the existence of characteristics depends on the sign of A 2 b? — 4dac:
« A > (0 : Characteristics:  hyperbolic equation (information travels at some finite speed)
A < 0 : No characteristics: elliptic equation (information travels infinitely fast)
« A = 0 : Degenerate case: parabolic equation

Elliptic equations are nice:
* The behaviour at one point influences the behaviour everywhere, the solution si expected to be smooth
* They are strictly boundary values problems (no initial conditions)




Generalization: ellipticity condition in dimension

- We consider a family of functions (a;;) satisfying the ellipticity condition: n

(a>0,&eR") Zaij(x)fiﬁj > alé’
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* An elliptic equation is an equation for i of the form:  aou — Z o \Giig )= f
ij Y '

Note the link with the coercivity condition for the biliniear form a in Lax-Milgram



Example 1/3: Poisson’s equation (steady-state diffusion)

Viu = f

Canonical example of hyperbolic equation

Example 2/3: Steady-state advection-diffusion equation with divergence-free velocity field

Vu — (w-V)u=0



Example 3/3: Linear elasticity

* Small displacements, linearisation of the strain tensor: ¢;; = 5\ 9r. | SYEY.Y o
J ? ? J

« Hooke’s law Hooke
(for homogeneous and isotropic materials) 0ij = Ujjki€kl = >\57;j Ckk T 2G67jj

* Mechanical equilibrium V-0c+F =0
(no inertia)
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Navier
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AN+G)V(V-u)+GVu+F =0

We’ll prove the elliptic condition later

Lamé
1795-1870




2. Maths - Lax-Milgram theorem



Lax-Milgram theorem

Let V be a Hilbert space
Leta : VX V — R be bilinear and :

e continuous, i.e. there is a constant M > 0 such that, forany u and vin V :

a(u,v)| < Mlul[v]lv|v

 coercive (elliptic), i.e. there is a constant & > 0 such that, for any u in V :

a(u,u)| = ofully

Leth : V — R be linear and :
e continuous, i.e. there is a constant L > O such that, forany vin V' :

b(v)] < Lijv]lv

Lax-Milgram theorem states that :
There is a unique solution 1 to the following problem: a(u, v) = b(v)

YVvoeV

We take V C H'(Q)
+ conditions at boundaries discussed next

H'(Q) = {u, Ou € L7 ()}

<u,v>:/uv+/Vu-Vv
Q Q

1/2
||| g1 = </ u2+/Vu-Vu)
Q Q




Recipe to prove that Lax-Milgram theorem applies:
PDE(u)
1. Multiplying by a test function v and integrating over the domain
2. Integrating by part
3. Applying boundary conditions
a(u,v) =b(v) Vv

Using some maths (Cauchy-Schwarz, Poincaré, Korn) We need to check that:
* & IS continuous and coercive
* b is continuous



Generalized Poincareé’s inequality

If (2 is a connected subset of R”, then there is a positive constant C such that
forallu € H(l)(Q) = {u € H ,u=0on I} C Q} where the measure of I is non-zero

|ull 2 < Cf[Vul -
where the constant C only depends on p and £2.

This shows that ||(.)|[;:, and |(.)|,, are equivalent norms, and only if we have a Dirichlet condition on 1



Diffusion equation
VQU _ f uw =0 on Fl
Vu-n=gqgonls

Can we write it as a problem of the following form: a(u,v) =b(v) Vv €V ?

(1) /Vzuv:/ffu
Q Q

(2)/SZVqu:LfU+A1(Vu)-nv+/r2(Vu)~nv

~

Wetakeu,vEI:I(l)(Q) H&(Q) :{fEHl(Q),f:Oon Fl}

a(u,v) = b(v)




Conditions

Coercivity condition:

a(u,v)| < Mluf| g ||v]| m

a(u, u)| = allullg:

1 1
a(u,u) = /QVuVu: §/QVuVu | ; /QVuVu b(v)| < L[ g

VUVU — ||V’LL|| 5 ||U|| Using Poincaré’s inequality
/Q L CQ L~

1 1 | 1
— CL(U,U) > §m1n (1 E) /Q (VUZ _|_u2) — §m1n (17 @) HUH%T—Il



Advection-diffusion equation

Vu —w-Vu=0 wu=0onT

Can we write it as a problem of the following form: a u, U L(U) VveV

/QVQMH—/ Vuv—/fv

Wetakeu,vEH&(Q) H&(Q):{f@[{l(ﬂ),f:()on I'}

/QVUVU—F/Q@U-V(U)U:/Q]%

a(u,v) + c(u,v) = b(v)



Coercivity condition:

We have already shown that the coercivity condition applies in case of a(u,v) = b(v).

We need to make sure that the same is the case for a(u, v) + c(u,v) = b(v)

= 0 because of incompressible flow = 0 in case of only Dirichlet BC

c(u,v) = /Qw(Vu)v = — /Q(V W)UV — /QwquU + /F uwvw - n = —c(v,u)

Here we have used:

/Q(V-w)uv: —/QW(WH/FUWW:—/Q W(u)v—/ﬂwvw)u +/Fww.n

—c(u,u) =0

> c(u, u)



Linear elasticity (1/4) 0i; = Cijrien
Weak prOblem e(u) = % (Vu - (Vu)T)
V-o+F=0

u:OonFl

T-n=g¢gonly

* Multiplying by a test function, integrating over the domain, integration by part: / o: Vv = / F-v +/ (0-m)-v
Q Q o

62)2' 1 82}2' 1 8’07;

O-ijail?j §Uij5’xj | 2 8a:j
* Using the symmetry of the stress tensor: :U”} dv; v,
2\ 0x; O
= 0ij€ij(v)

* Finally, after applying the boundary conditions:




Linear elasticity (2/4) Tij = Mgk w=0onT,

1

Lax-Milgram and coercivity e(u) = 5 (Vu+ (Vu)”)
V- 1+ F=0

T-n=gonls

Showing that @ and b are continuous is not difficult, the tricky point is the coercivity of the bilinear form: |a(u, u)| > o||ul/F: 2

a(u,u) :/Cijkleijekzl
Q

> 04/ eijeij = ¥ lleslinzo)
‘! 0]

If we assume that C is such that C,;,e;¢;; > ae;e;; for some positive constant o



Linear elasticity (3/4) 0i; = Clijhier
KOrn,S Iemma e(u) = % (Vu + (Vu)T)

u:OonF1

T-n=gqgonly

‘7 V-1+F =0

We need to prove:

Korn’s inequality: One consequence, analogous to Poincaré’s inequality:
There is a positive constant C such that, for all u in [H'(Q)]°:

2
1/2 if the measure of I | is non-zero, then Z leij (w72
1,
defines a norm, and this norm is equivalent to the H' norm

Jull g < C 9 llullfe + ) llei; ()2
i.J



Linear elasticity (4/4)
Physical interpretation of the need for Dirichlet

> lleis(w)]z:
i.J

defines a norm when the set over which the displacement is null is big enough

e(u) = % (Vu+ (Vu)")

If that is a norm, in particular it means that: e(#) = 0 < u =0

This is wrong in general: uniform translations and solid body rotations do not generate strains

Constraining the displacements on enough points means that we remove these degrees of freedom to isolate a unique solution



3. Numerics - Céa’s lemma

* We have seen 3 examples of equations where an ellipticity condition + Dirichlet conditions yields existence and uniqueness

* |t can also give estimates of the numerical error



Galerkin’s method

« Lax-Milgram theorem gives a solvability condition for the following equation in V-

a(u,v) =b(v) YveV

« It also works if we work in a subset V, C V (our finite element problem):

(1871-1945)

a(up,vn) = blvy) Yop € Vj

* This gives an interesting property:

a(u — up,vp) = alu,vy) — alup,vy) = bvy) — b(vy) =0

Galerkin orthogonality: The projection error is orthogonalto V,, a(u —u,,v,) =0 Vv, €V,

We take V) the set of continuous functions that are polynomial (order 1) on each cell of mesh size h



Cea’s lemma

aHu _ uhH%/ < a (u — Up, U — uh) using coercivity (1)
<a(u—up;u) =a(u—up;u—1vy)  playing with Galerkin orthogonality (3)
< MHu—uhHVHu—UhHV using continuity (2)
M
lu—uplly < —llu—wvnllv Vo

8}



From Céa’s lemma to practical estimations

solution of the continuous PDE

/ We take V) the set of continuous

|u — UhHI_Il < — Hu — vp|lgr Vo functions that are polynomial (order )
on each cell of mesh size /1

solution of the finlte element problem:  We can take v, = 7, (),
a(up,vp) = blvy) Yo, € Vi, the projection of  on V),




