Elliptic equations and error estimation

1. General - Elliptic equations

2. Maths - Lax-Milgram theorem

3. Numerics - Céa's lemma

1. General - Elliptic equations

Characterisation of linear, 2nd order PDEs

$$a(x,y)\frac{\partial^2 u}{\partial x^2} + b(x,y)\frac{\partial^2 u}{\partial x \partial y} + c(x,y)\frac{\partial^2 u}{\partial y^2} + d(x,y)\frac{\partial u}{\partial x} + e(x,y)\frac{\partial u}{\partial y} = f(u,x,y)$$

It can be shown that for a linear PDE, the existence of characteristics depends on the sign of $\Delta \triangleq b^2 - 4ac$:

- $\Delta > 0$: Characteristics: hyperbolic equation (information travels at some finite speed)
- $\Delta < 0$: No characteristics: **elliptic equation** (information travels infinitely fast)
- $\Delta = 0$: Degenerate case: parabolic equation

Elliptic equations are nice:

- The behaviour at one point influences the behaviour everywhere, the solution si expected to be smooth
- They are strictly boundary values problems (no initial conditions)

Generalization: ellipticity condition in dimension n

• We consider a family of functions (a_{ij}) satisfying the ellipticity condition: $\sum_{i,j}^n a_{ij}(x)\xi_i\xi_j \geq \alpha |\xi|^2$

• An elliptic equation is an equation for
$$u$$
 of the form: $a_0u - \sum_{i,j}^n \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i}\right) = f$

Note the link with the coercivity condition for the biliniear form a in Lax-Milgram

Example 1/3: Poisson's equation (steady-state diffusion)

$$\nabla^2 u = f$$

Canonical example of hyperbolic equation

Example 2/3: Steady-state advection-diffusion equation with divergence-free velocity field

$$\nabla^2 u - (w \cdot \nabla) u = 0$$

Example 3/3: Linear elasticity

• Small displacements, linearisation of the strain tensor: $e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right)$



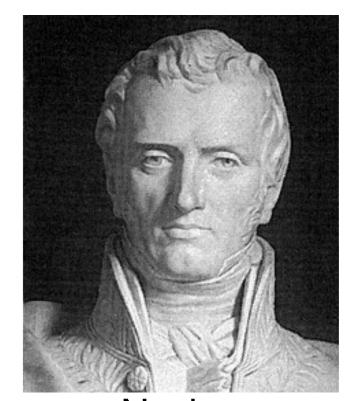
 Mechanical equilibrium (no inertia)

$$\nabla \cdot \sigma + F = 0$$

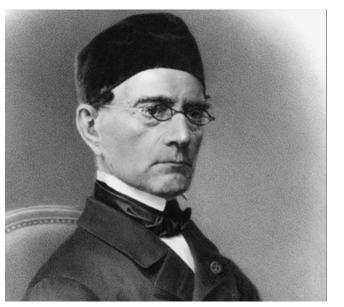
$$(\lambda + G) \nabla (\nabla \cdot u) + G \nabla^2 u + F = 0$$

We'll prove the elliptic condition later

Hooke 1635-1703



Navier 1785-1836



Lamé 1795-1870

2. Maths - Lax-Milgram theorem

Lax-Milgram theorem

Let V be a Hilbert space

Let $a: V \times V \to \mathbb{R}$ be bilinear and :

• continuous, i.e. there is a constant M>0 such that, for any u and v in V:

$$|a(u,v)| \le M||u||_V||v||_V$$

• coercive (elliptic), i.e. there is a constant $\alpha > 0$ such that, for any u in V:

$$|a(u,u)| \ge \alpha ||u||_V^2$$

Let $b:V\to\mathbb{R}$ be linear and :

• continuous, i.e. there is a constant L>0 such that, for any ν in V:

$$|b(v)| \le L||v||_V$$

Lax-Milgram theorem states that :

There is a unique solution u to the following problem: $a(u,v)=b(v) \quad \forall v \in V$

We take $V \subset H^1(\Omega)$

+ conditions at boundaries discussed next

$$H^1(\Omega) = \{u, \partial_i u \in L^2(\Omega)\}$$

$$H^{1}(\Omega) = \left\{ u, \ \partial_{i}u \in L^{2}(\Omega) \right\}$$
$$< u, v > = \int_{\Omega} uv + \int_{\Omega} \nabla u \cdot \nabla v$$

$$||u||_{H^1} = \left(\int_{\Omega} u^2 + \int_{\Omega} \nabla u \cdot \nabla u\right)^{1/2}$$

Recipe to prove that Lax-Milgram theorem applies:

- 1. Multiplying by a test function v and integrating over the domain
- 2. Integrating by part
- 3. Applying boundary conditions

$$a(u,v) = b(v) \quad \forall v$$

Using some maths (Cauchy-Schwarz, Poincaré, Korn) we need to check that:

- *a* is continuous and coercive
- b is continuous

Generalized Poincaré's inequality

If Ω is a connected subset of \mathbb{R}^n , then there is a positive constant C such that for all $u \in \tilde{H}^1_0(\Omega) = \left\{u \in H^1, u = 0 \text{ on } \Gamma_1 \subset \Omega\right\}$ where the measure of Γ_1 is non-zero

$$||u||_{L^2} \le C||\nabla u||_{L^2}$$

where the constant C only depends on p and Ω .

This shows that $\|(.)\|_{H^1}$, and $\|(.)\|_{H^1}$ are equivalent norms, and only if we have a Dirichlet condition on u

Diffusion equation

$$\nabla^2 u = f \qquad u = 0 \text{ on } \Gamma_1$$

$$\nabla u \cdot n = g \text{ on } \Gamma_2$$

Can we write it as a problem of the following form: $a(u,v) = b(v) \quad \forall v \in V$

$$(1) \int_{\Omega} \nabla^2 uv = \int_{\Omega} fv$$

(2)
$$\int_{\Omega} \nabla u \nabla v = \int_{\Omega} fv + \int_{\Gamma_1} (\nabla u) \cdot nv + \int_{\Gamma_2} (\nabla u) \cdot nv$$

We take $u, v \in \tilde{H}_0^1(\Omega)$

$$\tilde{H}_0^1(\Omega) = \{ f \in H^1(\Omega), f = 0 \text{ on } \Gamma_1 \}$$

$$a(u,v) = b(v)$$

Coercivity condition:

$$a(u,u) = \int_{\Omega} \nabla u \nabla u = \frac{1}{2} \int_{\Omega} \nabla u \nabla u + \frac{1}{2} \int_{\Omega} \nabla u \nabla u$$

Conditions

Conditions
$$|a(u,v)| \leq M ||u||_{H^1} ||v||_{H^1}$$

$$|a(u,u)| \geq \alpha ||u||_{H^1}^2$$

$$|b(v)| \leq L ||v||_{H^1}$$

$$|a(u,u)| \ge \alpha ||u||_{H^1}^2$$

$$|b(v)| \le L||v||_{H^1}$$

$$\int_{C} \nabla u \nabla u = \|\nabla u\|_{L^{2}}^{2} \ge \frac{1}{C^{2}} \|u\|_{L^{2}}^{2}$$

Using Poincaré's inequality

$$\implies a(u,u) \ge \frac{1}{2} \min\left(1, \frac{1}{C^2}\right) \int_{\Omega} \left(\nabla u^2 + u^2\right) = \frac{1}{2} \min\left(1, \frac{1}{C^2}\right) \|u\|_{H^1}^2$$

Advection-diffusion equation

$$\nabla^2 u - w \cdot \nabla u = 0 \quad u = 0 \text{ on } \Gamma$$

Can we write it as a problem of the following form: $a(u,v) = L(v) \ \forall v \in V$

$$\int_{\Omega} \nabla^2 u v + \int_{\Omega} w \cdot (\nabla u) v = \int_{\Omega} f v$$

We take
$$u,v\in H^1_0(\Omega)$$

$$H^1_0(\Omega)=\{f\in H^1(\Omega), f=0 \text{ on } \Gamma\}$$

(2)
$$\int_{\Omega} \nabla u \nabla v + \int_{\Omega} w \cdot \nabla(u) v = \int_{\Omega} f v$$

$$a(u,v) + c(u,v) = b(v)$$

Coercivity condition:

We have already shown that the coercivity condition applies in case of a(u, v) = b(v).

We need to make sure that the same is the case for a(u, v) + c(u, v) = b(v)

= 0 because of incompressible flow

= 0 in case of only Dirichlet BC

$$c(u,v) = \int_{\Omega} w(\nabla u)v = -\int_{\Omega} (\nabla \cdot w)uv - \int_{\Omega} wu\nabla v + \int_{\Gamma} uvw \cdot n = -c(v,u)$$

Here we have used:

$$\int_{\Omega} (\nabla \cdot w) uv = -\int_{\Omega} w \nabla (uv) + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (u)v - \int_{\Omega} w \nabla (v)u + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (u)v - \int_{\Omega} w \nabla (v)u + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)u + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)u + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)uv + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)uv + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)uv + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)uv + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w \nabla (v)uv + \int_{\Gamma} uvw \cdot n = -\int_{\Omega} w \nabla (v)uv - \int_{\Omega} w$$

$$\implies c(u, u) = -c(u, u) = 0$$

Linear elasticity (1/4) Weak problem

$$\sigma_{ij} = C_{ijkl}e_{kl}$$

$$e(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right)$$

$$\nabla \cdot \sigma + F = 0$$

$$u = 0 \text{ on } \Gamma_1$$

$$\tau \cdot n = g \text{ on } \Gamma_2$$

• Multiplying by a test function, integrating over the domain, integration by part: $\int_{\Omega} \sigma : \nabla v = \int_{\Omega} F \cdot v + \int_{\partial \Omega} (\sigma \cdot n) \cdot v$

• Using the symmetry of the stress tensor:

$$\sigma_{ij} \frac{\partial v_i}{\partial x_j} = \frac{1}{2} \sigma_{ij} \frac{\partial v_i}{\partial x_j} + \frac{1}{2} \sigma_{ji} \frac{\partial v_i}{\partial x_j}$$
$$= \sigma_{ij} \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$
$$= \sigma_{ij} e_{ij}(v)$$

• Finally, after applying the boundary conditions:

$$\int_{\Omega} \sigma_{ij}(u)e_{ij}(v) = \int_{\Omega} F \cdot v + \int_{\Gamma_2} g \cdot v$$
$$a(u,v) = b(v)$$

Linear elasticity (2/4) Lax-Milgram and coercivity

$$\sigma_{ij} = C_{ijkl}e_{kl}$$

$$e(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right)$$

$$\tau \cdot n = g \text{ on } \Gamma_2$$

$$\cdot \tau + F = 0$$

$$\int_{\Omega} \sigma_{ij}(u)e_{ij}(v) = \int_{\Omega} F \cdot v + \int_{\Gamma_2} g \cdot v$$
$$a(u, v) = b(v)$$

Showing that a and b are continuous is not difficult, the tricky point is the coercivity of the bilinear form: $|a(u,u)| \ge \alpha \|u\|_{H^1}^2$

$$a(u, u) = \int_{\Omega} C_{ijkl} e_{ij} e_{kl}$$

$$\geq \alpha \int_{\Omega} e_{ij} e_{ij} = \sum_{i,j} ||e_{ij}||_{L^{2}(\Omega)}$$

If we assume that C is such that $C_{ijkl}e_{ij}e_{kl} \geq \alpha e_{ij}e_{ij}$ for some positive constant α

Linear elasticity (3/4) Korn's lemma

$$a(u, u) \ge \sum_{i,j} \|e_{ij}(u)\|_{L^{2}(\Omega)} \ge \alpha \|u\|_{H^{1}}^{2}$$
$$e(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^{T}\right)$$

$$\sigma_{ij} = C_{ijkl}e_{kl}$$

$$e(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right)$$

$$\tau \cdot n = g \text{ on } \Gamma_2$$

$$\int_{\Omega} \sigma_{ij} e_{ij}(v) = \int_{\Omega} F \cdot v + \int_{\Gamma_2} g \cdot v$$
$$a(u, v) = b(v)$$

Korn's inequality:

There is a positive constant C such that, for all u in $[H^1(\Omega)]^3$:

$$||u||_{H^1} \le C \left\{ ||u||_{L^2}^2 + \sum_{i,j} ||e_{ij}(u)||_{L^2}^2 \right\}^{1/2}$$

One consequence, analogous to Poincaré's inequality:

if the measure of Γ_1 is non-zero, then $\sum_{i,j} \|e_{ij}(u)\|_{L^2}^2$

defines a norm, and this norm is equivalent to the H^1 norm

Linear elasticity (4/4) Physical interpretation of the need for Dirichlet

$$\sum_{i,j} \|e_{ij}(u)\|_{L^2}^2$$

defines a norm when the set over which the displacement is null is big enough

$$e(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right)$$

If that is a norm, in particular it means that: $e(u) = 0 \Leftrightarrow u = 0$

This is wrong in general: uniform translations and solid body rotations do not generate strains

Constraining the displacements on enough points means that we remove these degrees of freedom to isolate a unique solution

3. Numerics - Céa's lemma

- We have seen 3 examples of equations where an ellipticity condition + Dirichlet conditions yields existence and uniqueness
- It can also give estimates of the numerical error

Galerkin's method

ullet Lax-Milgram theorem gives a solvability condition for the following equation in V:

$$a(u,v) = b(v) \quad \forall v \in V$$

• It also works if we work in a subset $V_h \subset V$ (our finite element problem):

$$a(u_h, v_h) = b(v_h) \quad \forall v_h \in V_h$$

This gives an interesting property:

$$a(u - u_h, v_h) = a(u, v_h) - a(u_h, v_h) = b(v_h) - b(v_h) = 0$$

(1871-1945)

Galerkin orthogonality: The projection error is orthogonal to V_h , $a(u-u_h,v_h)=0$ $\forall v_h \in V_h$

We take V_h the set of continuous functions that are polynomial (order n) on each cell of mesh size h

Céa's lemma

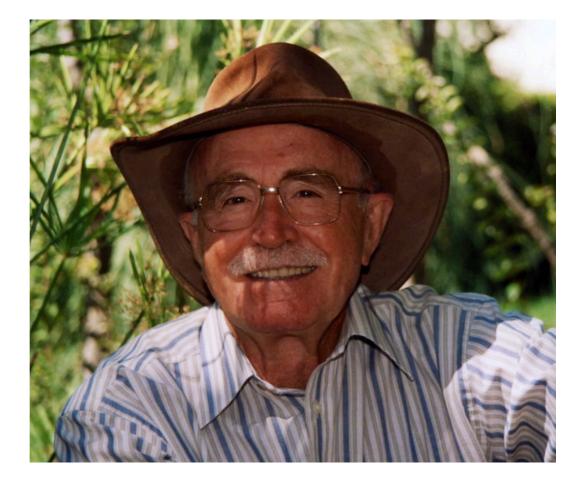
$$|a(u,u)| \ge \alpha ||u||_V^2 \tag{1}$$

$$a(u,v) = b(v) \quad \forall v \in V$$

$$a(u_h, v_h) = b(v_h) \quad \forall v_h \in V_h$$

$$|a(u,v)| \le M||u||_V||v||_V \quad (2)$$

$$a(u - u_h, v_h) = 0 (3)$$



(1964)

$$\alpha \|u - u_h\|_V^2 \le a (u - u_h; u - u_h)$$

$$\leq a(u - u_h; u) = a(u - u_h; u - v_h)$$

$$\leq M \|u - u_h\|_V \|u - v_h\|_V$$

using coercivity (1)

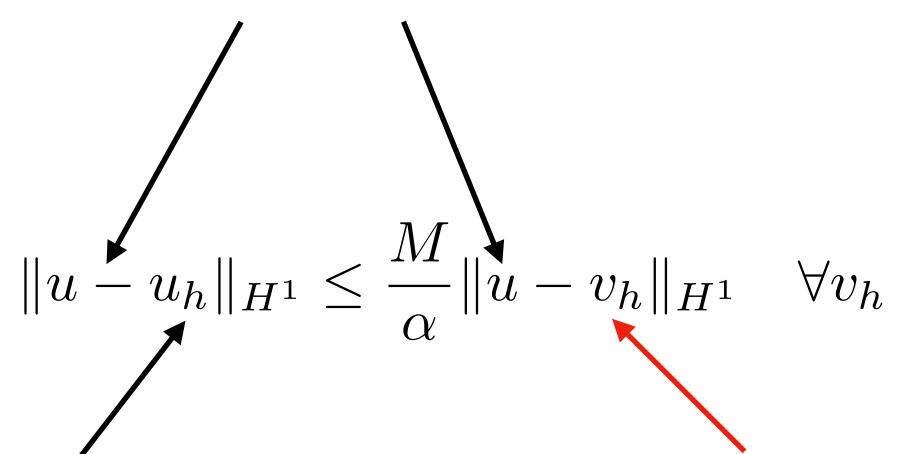
playing with Galerkin orthogonality (3)

using continuity (2)

$$||u - u_h||_V \le \frac{M}{\alpha} ||u - v_h||_V \quad \forall v_h$$

From Céa's lemma to practical estimations

solution of the continuous PDE



We take V_h the set of continuous functions that are polynomial (order n) on each cell of mesh size h

solution of the finite element problem:

$$a(u_h, v_h) = b(v_h) \quad \forall v_h \in V_h$$

We can take $v_h = \pi_h(u)$, the projection of u on V_h

Bramble-Hilbert lemma: $\|u-\pi_h(u)\|_{H^n} \leq kh^{m-n}\|u\|_{H^m}$

$$||u - u_h||_{H^1} \le Ch^{m-1}||u||_{H^m}$$