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Abstract

We present an overview of the most common numerical solution strategies for the incompressible Navier–Stokes equations,

including fully implicit formulations, artificial compressibility methods, penalty formulations, and operator splitting methods

(pressure/velocity correction, projection methods). A unified framework that explains popular operator splitting methods as special

cases of a fully implicit approach is also presented and can be used for constructing new and improved solution strategies. The

exposition is mostly neutral to the spatial discretization technique, but we cover the need for staggered grids or mixed finite elements

and outline some alternative stabilization techniques that allow using standard grids. Emphasis is put on showing the close rela-

tionship between (seemingly) different and competing solution approaches for incompressible viscous flow.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

Incompressible viscous flow phenomena arise in nu-
merous disciplines in science and engineering. The sim-

plest viscous flow problems involve just one fluid in the

laminar regime. The governing equations consist in this

case of the incompressible Navier–Stokes equations,

ov

ot
þ v � rv ¼ � 1

.
rp þ mr2vþ g; ð1Þ

and the equation of continuity, also called the incom-

pressibility constraint,

r � v ¼ 0: ð2Þ
In these equations, v is the velocity field, p is the pres-
sure, . is the fluid density, g denotes body forces (such as
gravity, centrifugal and Coriolis forces), m is the kine-
matic viscosity of the fluid, and t denotes time. The

initial conditions consist of prescribing v, whereas the
boundary conditions can be of several types: (i) pre-

scribed velocity components, (ii) vanishing normal de-
rivatives of velocity components, or (iii) prescribed

stress vector components. The pressure is only deter-

mined up to a constant, but can be uniquely determined

by prescribing the value (as a time series) at one spatial

point. Many people refer to the system (1) and (2) as the

Navier–Stokes equations. The authors will also adapt to

this habit in the present paper.
Most flows in nature and technological devices are

turbulent. The transition from laminar to turbulent flow

is governed by the Reynolds number, Re ¼ Ud=m, where
U is a characteristic velocity of the flow and d is a

characteristic length of the involved geometries. The

basic Navier–Stokes equations describe both laminar

and turbulent flow, but the spatial resolution required to

resolve the small (and important) scales in turbulent
flow makes direct solution of the Navier–Stokes equa-

tions too computationally demanding on today�s com-
puters. As an alternative, one can derive equations for

the average flow and parameterize the effects of turbu-

lence. Such common models for turbulent flow normally

consist of two parts: one part modeling the average flow,

and these equations are very similar to (1) and (2), and

one part modeling the turbulent fluctuations. These two
parts can at each time level be solved sequentially or in a

fully coupled fashion. In the former case, one needs

methods and software for the system (1) and (2) also in

turbulent flow applications. Even in the fully coupled

case the basic ideas regarding discretization of (1) and

(2) are reused. We also mention that simulation of tur-

bulence by solving the basic Navier–Stokes equations on

very fine grids, referred to as direct numerical simulation
(DNS), achieves increasing importance in turbulence
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research as these solutions provide reference databases

for fitting parameterized models.

In more complex physical flow phenomena, laminar

or turbulent viscous flow is coupled with other pro-

cesses, such as heat transfer, transport of pollution, and
deformation of structures. Multi-phase/multi-compo-

nent fluid flow models often involve equations of the

type (1) and (2) for the total flow coupled with advec-

tion–diffusion-type equations for the concentrations of

each phase or component. Many numerical strategies

for complicated flow problems employ a splitting of the

compound model, resulting in the need to solve (1) and

(2) as one subset of equations in a possibly larger model
involving lots of partial differential equations. Hence, it

is evident that complex physical flow phenomena also

demand software for solving (1) and (2) in a robust

fashion.

Viscous flow models have important applications

within the area of water resources. The common Darcy-

type models for porous media flow are based on aver-

aging viscous flow in a network of pores. However, the
averaging introduces the permeability parameter, which

must be measured experimentally, often with significant

uncertainty. For multi-phase flow the ad hoc extensions

of the permeability concept to relative permeabilities is

insufficient for satisfactory modeling of many flow

phenomena. Moreover, the extensions of Darcy�s law to
flow in fractured or highly porous media introduce

considerable modeling uncertainty. A more fundamen-
tal approach to porous media flow is to simulate the

viscous flow at the pore scale, in a series of network

realizations, and compute the relation between the flow

rate and the pressure differences. This is an important

way to gain more insight into deriving better averaged

flow models for practical use and to better understand

the permeability concept [6,80]. The approach makes a

demand for solving (1) and (2) in highly complex geo-
metries, but the left-hand side of (1) can be neglected

because of small Reynolds numbers (small characteristic

length).

Water resources research and engineering are also

concerned with free surface flow and currents in rivers,

lakes, and the ocean. The commonly used models in

these areas are based on averaging procedures in the

vertical direction and ad hoc incorporation of viscous
and turbulent effects. The shortcomings of averaged

equations and primitive viscosity models are obvious in

very shallow water, and in particular during run-up on

beaches and inclined dam walls. Fully 3D viscous flow

models based on (1) and (2) with free surfaces are now

getting increased interest as these are becoming more

accurate and computationally feasible [1,24,33,69,72,79].

Efficient and reliable numerical solution of the in-
compressible Navier–Stokes equations for industrial

flow or water resources applications is extremely chal-

lenging. Very rapid changes in the velocity field may

take place in thin boundary layers close to solid walls.

Complex geometries can also lead to rapid local changes

in the velocity. Locally refined grids, preferably in

combination with error estimation and automatic grid

adaption, are hence a key ingredient in robust methods.
Most implicit solution methods for the Navier–Stokes

equations end up with saddle-point problems, which

complicates the construction of efficient iterative meth-

ods for solving the linear systems arising from the dis-

cretization process. Implicit solution methods also make

a demand for solving large systems of nonlinear alge-

braic equations. Many incompressible viscous flow

computations involve large-scale flow applications with
several million grid points and thereby a need for the

next generation of super-computers before becoming

engineering or scientific practice. We have also men-

tioned that Navier–Stokes solvers are often embedded in

much more complex flow models, which couple turbu-

lence, heat transfer, and multi-specie fluids. Before at-

tacking such complicated problems it is paramount that

the numerical state-of-the-art of Navier–Stokes solvers
is satisfactory. Turek [84] summarizes the results of

benchmarks that were used to assess the quality of so-

lution methods and software for unsteady flow around a

cylinder in 2D and 3D. The discrepancy in results for the

lifting force shows that more research is needed to de-

velop sufficiently robust and reliable methods.

Numerical methods for incompressible viscous flow is

a major part of the rapidly growing field computational
fluid dynamics (CFD). CFD is now emerging as an op-

erative tool in many parts of industry and science.

However, CFD is not a mature field either from a nat-

ural scientist�s or an application engineer�s point of view;
robust methods are still very much under development,

many different numerical tracks are still competing, and

reliable computations of complex multi-fluid flows are

still (almost) beyond reach with today�s methods and
computers. We believe that at least a couple of decades

of intensive research are needed to merge the seemingly

different solution strategies and make them as robust as

numerical models in, e.g., elasticity and heat conduction.

Sound application of CFD today therefore requires ad-

vanced knowledge and skills both in numerical methods

and fluid dynamics. To gain reliability in simulation

results, it should be a part of common practice to
compare the results from different discretizations, not

only varying the grid spacings but also changing the

discretization type and solution strategy. This requires a

good overview and knowledge of different numerical

techniques. Unfortunately, many CFD practitioners

have a background from only one ‘‘numerical school’’

practicing a particular type of discretization technique

and solution approach. One goal of the present paper is
to provide a generic overview of the competing and most

dominating methods in the part of CFD dealing with

laminar incompressible viscous flow.

1126 H.P. Langtangen et al. / Advances in Water Resources 25 (2002) 1125–1146



Writing a complete review of numerical methods for

the Navier–Stokes equations is probably an impossible

task. The book by Gresho and Sani [27] is a remarkable

attempt to review the field, though with an emphasis on

finite elements, but it required over 1000 pages and 48
pages of references. The page limits of a review paper

demand the authors to only briefly report a few aspects

of the field. Our focus is to present the basic ideas of the

most fundamental solution techniques for the Navier–

Stokes equations in a form that is accessible to a wide

audience. The exposition is hence of the introductory

and ‘‘engineering’’ type, keeping the amount of mathe-

matical details to a modest level. We do not limit the
scope to a particular spatial discretization technique,

and therefore we can easily outline a common frame-

work and reasoning which demonstrate the close con-

nections between seemingly many different solution

procedures in the literature. Hence, our hope is that this

paper can help newcomers to the numerical viscous flow

field see some structure in the jungle of Navier–Stokes

solvers and papers, without having to start by digesting
thick textbooks.

The literature on numerical solutions of the Navier–

Stokes equations is overwhelming, and only a small

fraction of the contributions is cited in this paper. Some

books and reviews that the authors have found attrac-

tive are mentioned next. These references serve as good

starting points for readers who want to study the con-

tents of the present paper in more detail. Fletcher [21]
contains a nicely written overview of some finite element

and finite difference techniques for incompressible fluid

flow (among many other topics). Gentle introductions to

numerical methods and their applications to fluid flow

can be found in the textbooks [3,20,28,58,59] (finite

differences, finite volumes) and [60,65,66,89] (finite ele-

ments). More advanced texts include [15,25–27,30,61,84,

86]. Readers with a background in functional analysis
and special interest in mathematics and finite element

methods are encouraged to address Girault and Raviart

[25] and the reviews by Dean and Glowinski [16] and

Rannacher [63]. Readers interested in the efficiency of

solution algorithms for the Navier–Stokes equations

should consult Turek [84]. Gresho and Sani�s compre-
hensive book [27] is accessible to a wide audience and

contains thorough discussions of many topics that are
weakly covered in most other literature, e.g., questions

related to boundary conditions. The book�s extensive
report on practical experience with various methods is

indispensable for CFD scientists, software developers,

and consultants. An overview of CFD books is available

on the Internet [36].

Section 2 describes the natural first approach to

solving the Navier–Stokes equations and points out
some basic numerical difficulties. Necessary conditions

to ensure stable spatial discretizations are treated in

Section 3. Thereafter we consider approximate solution

strategies where the Navier–Stokes equations are

transformed to more common and tractable systems of

partial differential equations. These strategies include

modern stabilization techniques (Section 4.1), penalty

methods (Section 4.2), artificial compressibility (Section
4.3), and operator splitting techniques (Section 5). The

latter family of strategies is popular and widespread and

are known under many names in the literature, e.g.,

projection methods and pressure (or velocity) correction

methods. We end the overview of operating splitting

methods with a framework where such methods can be

viewed as special preconditioners in an iterative scheme

for a fully implicit formulation of the Navier–Stokes
equations. Section 7 mentions some examples of existing

software packages for solving incompressible viscous

flow problems, and in Section 8 we point out important

areas for future research.

2. A Naive derivation of schemes

With a background from a basic course in the nu-

merical solution of partial differential equations, one

would probably think of (1) as some kind of heat

equation and try the simplest possible scheme in time,

namely an explicit forward step

v‘þ1 � v‘

Dt
þ v‘ � rv‘ ¼ � 1

.
rp‘ þ mr2v‘ þ g‘: ð3Þ

Here, Dt is the time step and superscript ‘ denotes the
time level. The equation can be trivially solved for v‘þ1,
after having introduced, e.g., finite elements [27], finite

differences [3], finite volumes [20], or spectral methods

[11] to discretize the spatial operators. However, the

fundamental problem with this approach is that the new

velocity v‘þ1 does not, in general, satisfy the other

equation, i.e., r � v‘þ1 6¼ 0. Moreover, there is no natural
computation of p‘þ1.
A possible remedy is to introduce a pressure at p‘þ1 in

(3), which leaves two unknowns, v‘þ1 and p‘þ1, and hence
requires a simultaneous solution of

v‘þ1 þ Dt
.
rp‘þ1 ¼ v‘ � Dtv‘ � rv‘ þ Dtmr2v‘ þ Dtg‘; ð4Þ

r � v‘þ1 ¼ 0: ð5Þ
We can eliminate v‘þ1 by taking the divergence of (4) to
obtain a Poisson equation for the pressure,

r2p‘þ1 ¼ .
Dt

r � ðv‘ � Dtv‘ � rv‘ þ Dtmr2v‘ þ Dtg‘Þ: ð6Þ

However, there are no natural boundary conditions for

p‘þ1. Hence, solving (6) and then finding v‘þ1 trivially
from (4) is therefore not in itself a sufficient solution

strategy. More sophisticated variants of this method are

considered in Section 5, but the lack of explicit bound-

ary data for p‘þ1 will remain a problem.
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More implicitness of the velocity terms in (1) can

easily be introduced. One can, for example, try a semi-

implicit approach, based on a Backward Euler scheme,

using an ‘‘old’’ velocity (as a linearization technique) in

the convective term v � rv:

ð1þ Dtv‘ � r � Dtmr2Þv‘þ1 þ Dt
.
rp‘þ1

¼ v‘ þ Dtg‘þ1; ð7Þ

r � v‘þ1 ¼ 0: ð8Þ

This problem has the proper boundary conditions since
(7) and (8) have the same order of the spatial operators

as the original system (1) and (2). Using some discreti-

zation in space, one arrives in both cases at a linear

system, which can be written on block form:

N Q
QT 0

� �
u
p

� �
¼ f

0

� �
: ð9Þ

The vector u contains in this context all the spatial de-
grees of freedom (i.e., grid point values) of the vector

field v‘þ1, whereas p is the vector of pressure degrees
of freedom in the grid.

A fully implicit approach, using a backward Euler

scheme for (1), where the convective term v � rv is
evaluated as v‘þ1 � rv‘þ1, leads to a nonlinear equation
in v‘þ1. Standard Newton or Picard iteration methods
result in a sequence of matrix systems of the form at

each time level.

In contrast to linear systems arising from standard
discretization of, e.g., the diffusion equation, the system

(9) may be singular. Special spatial discretization or

stabilizing techniques are needed to ensure an invertible

matrix in (9) and are reviewed in Sections 3 and 4. In the

simplest case, N is a symmetric and positive definite

matrix (this requires the convective term v � rv to be
evaluated explicitly at time level ‘, such that the term
appears on the right-hand side of (7)), and Q is a rect-
angular matrix. The stable spatial discretizations are

designed such that the matrix QTQ is non-singular. It

should be noted that these conditions on N and Q lead

to the property that the coefficient matrix in (9) is

symmetric and non-singular but indefinite. This indefi-

niteness causes some difficulties. For example, a stan-

dard iterative method like the preconditioned conjugate

gradient method cannot be directly used. In fact, pre-
conditioners for these saddle-point problems are much

more delicate to construct even when using more general

solvers like, e.g., GMRES and may lead to breakdown if

not constructed properly. Many of the time stepping

procedures for the Navier–Stokes system have been

partially motivated by the desire to avoid the solution of

systems of the form (9). However, as we shall see later,

such a strategy will introduce other difficulties.

3. Spatial discretization techniques

So far we have only been concerned with the details

of the time discretization. Now we shall address spatial

discretization techniques for the systems (4) and (5) or
(7) and (8).

3.1. Finite differences and staggered grids

Initial attempts to solve the Navier–Stokes equations

employed straightforward centered finite differences to

the spatial operators on a regular grid, with the pressure

and velocity components being unknown at the corners

of each cell. Two typical terms in the equations would

then be discretized as follows in a uniform 2D grid:

op
ox

� �‘þ1
i;j

	 �
p‘þ1iþ1;j � p‘þ1i�1;j

2Dx
ð10Þ

and

o2u
oy2

� �‘
i;j

	
u‘i;j�1 � 2u‘i;j þ u‘i;jþ1

Dy2
;

where Dx and Dy are uniform spatial cell sizes, /‘
i;j means

the numerical value of a function / at the point with
spatial index ði; jÞ at time level ‘.
Two types of instabilities were soon discovered, as-

sociated with this type of spatial discretization. The

pressure can be highly oscillatory or even undetermined

by the discrete system, although the corresponding ve-

locities may be well approximated. The reason for this

phenomenon is that the symmetric difference operator

(10) will annihilate checkerboard pressures, i.e., pres-
sures which oscillate between 1 and )1 on each grid line
connecting the grid points. In fact, if the vertices are

colored in a checkerboard pattern, then the pressure at

the black vertices will not be related to the pressure at

the white vertices. Hence, the pressure is undetermined

by the discrete system and wild oscillations or overflow

will occur. This instability is related to whether the

system (9) is singular or not. There is also a ‘‘softer’’
version of this phenomenon when (9) is nearly singular.

Then the pressure will not necessarily oscillate, but it

will not converge to the actual solution either.

The second type of instability is visible as non-phys-

ical oscillations in the velocities at high Reynolds num-

bers. This instability is the same as encountered when

solving advection-dominated transport equations, hyper-

bolic conservation laws, or boundary layer equations
and can be cured by well-known techniques, among

which upwind differences represent the simplest ap-

proach. We shall not be concerned with this topic in the

present paper, but the interested reader can consult the

references [9,20,21,27,59,71] for effective numerical

techniques.
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The remedy for oscillatory or checkerboard pressure
solutions is, in a finite difference context, to introduce a

staggered grid in space. This means that the primary

unknowns, the pressure and the velocity components,

are sought at different points in the grid. Fig. 1 displays

such a grid in 2D, and Fig. 2 zooms in on a cell and

shows the spatial indices associated with the point val-

ues of the pressure and velocity components that enter

the scheme.
Discretizing the terms �op=ox and o2u=oy2 on the

staggered grid at a point with spatial indices ði; jþ 1
2
Þ

now results in

� op
ox

� �‘þ1
i;jþ1

2

	 �
p‘þ1
iþ1
2
;jþ1

2

� p‘þ1
i�1
2
;jþ1

2

Dx

and

o2u
oy2

� �‘
i;jþ1

2

	
u‘
i;j�1

2

� 2u‘
i;jþ1

2

þ u‘
i;jþ3

2

Dy2
:

The staggered grid is convenient for many of the de-

rivatives appearing in the equations, but for the non-

linear terms it is necessary to introduce averaging. See,

for instance, [3,20,21,28] for more details regarding

discretization on staggered grids.

Finite volume methods are particularly popular in

CFD. Although the final discrete equations are similar

to those obtained by the finite difference method, the

reasoning is different. One works with the integral form

of the Eqs. (1) and (2), obtained either by integrating (1)
and (2) or by direct derivation from basic physical prin-

ciples. The domain is then divided into control volumes.

These control volumes are different for the integral form

of (2) and the various components of the integral form

of (1). For example, in the grid in Fig. 1 the dotted cell,

also appearing in Fig. 2, is a typical control volume for

the integral form of the equation of continuity, whereas

the control volumes for the components of the equation
of motion are shifted half a cell size in the various spatial

directions. The governing equations in integral form

involve volume/area integrals over the interior of a

control volume and surface/line integrals over the sides.

In the computation of these integrals, there is freedom

to choose the type of interpolation for v and p and the
numerical integration rules. Many CFD practitioners

prefer finite volume methods because the derivation of
the discrete equations is based directly on the underlying

physical principles, thus resulting in ‘‘physically sound’’

schemes. From a mathematical point of view, finite

volume, difference, and element methods are closely re-

lated, and it is difficult to decide that one approach is

superior to the others; these spatial discretization

methods have different advantages and disadvantages.

We refer to textbooks like [3,20] for detailed information
about the finite volume discretization technology.

Staggered grids are widespread in CFD. However, in

recent years other ways of stabilizing the spatial discreti-

zation have emerged. Auxiliary terms in the equations or

certain splittings of the operators in the Navier–Stokes

equations can allow stable pressure solutions also on a

standard grid. Avoiding staggered grids is particularly

convenient when working with curvelinear grids. Much
of the fundamental understanding of stabilizing the

spatial discretization has arisen from finite element

theory. We therefore postpone the discussion of partic-

ular stabilization techniques until we have reviewed the

basics of finite element approximations to the spatial

operators in the time-discrete Navier–Stokes equations.

3.2. Mixed finite elements

The staggered grids use different interpolation for the

pressure and the velocity, hence we could call it mixed

interpolation. In the finite element world the analog

interpolation is referred to as mixed elements. The idea
is, basically, to employ different basis functions for the

different unknowns. A finite element function is ex-

pressed as a linear combination of a set of prescribed

basis functions, also called shape functions or trial

functions [88]. These basis functions are defined relative

to a grid, which is a collection of elements (triangles,

Fig. 1. Example on a staggered grid for the Navier–Stokes equations,

where p and v ¼ ðu; vÞ are unknown at different spatial locations. The
(
) denotes p points, (–) denotes u points, whereas (j) denotes v points.

Fig. 2. A typical cell in a staggered grid.

H.P. Langtangen et al. / Advances in Water Resources 25 (2002) 1125–1146 1129



qaudrilaterals, tetrahendra, or boxes), so the overall

quality of a finite element approximation depends on the

shape of the elements and the type of basis functions.

Normally, the basis functions are lower-order polyno-

mials over a single element.
One popular choice of basis functions for viscous

flow is quadratic piecewise polynomials for the velocity

components and linear piecewise polynomials for the

pressure. This was in fact the spatial discretization used

in the first report, by Taylor and Hood [76], on finite

element methods for the Navier–Stokes equations.

The Babuska–Brezzi (BB) condition [8,25,27,30] is

central for ensuring that the linear system of the form (9)
is non-singular. Much of the mathematical theory and

understanding of importance for the numerical solution

of the Navier–Stokes equations has been developed for

the simplified Stokes problem, where the acceleration

terms on the left-hand side of (1) vanish:

0 ¼ � 1
.
rp þ mr2vþ g; ð11Þ

r � v ¼ 0: ð12Þ
We use the Galerkin method to formulate the discrete

problem, seeking approximations

v 	 v̂v ¼
Xd

r¼1

Xn

i¼1
vriN

r
i ; ð13Þ

p 	 p̂p ¼
Xm
i¼1

piLi; ð14Þ

where N r
i ¼ Nier, Ni and Li are some scalar basis func-

tions and er is the unity vector in the direction r. Here d
is the number of spatial dimensions, i.e., 2 or 3. The

number of velocity unknowns is dn, whereas the pres-

sure is represented by m unknowns. Using Ni as

weighting function for (11) and Li as weighting function

for (12), and integrating over X, one can derive a linear
system for the coefficients vri and pi:

Xn

j¼1
Nijvrj þ

Xm

j¼1
Qr

ijpj ¼ f r
i ; i ¼ 1; . . . ; dn; r ¼ 1; . . . ; d;

ð15ÞXd

r¼1

Xn

j¼1
Qr

jiv
r
j ¼ 0; i ¼ 1; . . . ;m; ð16Þ

where

Nij ¼
Z

X
mrNi � rNj dX; ð17Þ

Qr
ij ¼

1

.

Z
X

oLi

oxr
Nj dX

¼ � 1
.

Z
X

oNi

oxr
Lj dX þ 1

.

Z
dX

NiLjnr dC; ð18Þ

f r
i ¼

Z
X
grN r

i dX: ð19Þ

We shall write such a system on block matrix form (like

(9)):

N Q

QT 0

� �
u

p

� �
¼

f

0

� �
; N ¼

N 0 0

0 N 0

0 0 N

2
64

3
75;

Q ¼
Q1

Q2

Q3

2
64

3
75: ð20Þ

Here N is the matrix with elements Nij, Q
r has elements

Qr
ij, and

u ¼ ðv11; . . . ; v1n; v21; . . . ; v2n; v31; . . . ; v3nÞ
T
;

p ¼ ðp1; . . . ; pnÞT:
ð21Þ

The N matrix is seen to be dn� dn, whereas Q is
m� dn. In (20) and (21) we have assumed that d ¼ 3.
Moreover, we have multiplied the equation of continuity

by the factor �1=. to obtain a symmetric linear system.
We shall now go through some algebra related to the

block form of the Stokes problem, since this algebra will

be needed later in Section 5.6. Let us write the discrete

counterpart to (11) and (12) as

NuþQp ¼ f ; ð22Þ
QTu ¼ 0: ð23Þ
The matrices N and Q can in principle arise from any

spatial discretization method, e.g., finite differences, fi-

nite volumes, or finite elements, although we will spe-

cifically refer to the latter in what follows. First, we shall

ask the question: What conditions on N and Q are

needed to ensure that u and p are uniquely determined?
We assume that N is positive definite (this assumption is

actually the first part of the BB condition, which is

satisfied for all ‘‘standard’’ elements). We can then

multiply (22) by N�1 to obtain an expression for u,
which can be inserted in (23). The result is a linear

system for p:

�QTN�1Qp ¼ QTN�1f : ð24Þ
Once the pressure is known, the velocities are found by

solving

Nu ¼ ðf �QpÞ:
To obtain a uniquely determined u and p, QTN�1Q,
which is referred to as the Schur complement, must be
non-singular. A necessary sufficient condition to ensure

this is KerðQÞ ¼ f0g, which is equivalent to requiring
that

sup
v̂v

Z
X
p̂pr � v̂v > 0; ð25Þ
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for all discrete pressure p̂p 6¼ 0, where the supremum is

taken over all discrete velocities on the form (13). This

guarantees solvability, but to get convergence of the

numerical method, one also needs stability. Stability

means in this setting that QTN�1Q does not tend to a
singular system as the h decrease. It is also sufficient

to ensure optimal accuracy. This is where the famous

BB condition comes in:

inf
p
sup
v̂v

R
X p̂pr � v̂v
kv̂vk1kp̂pk0

P c > 0: ð26Þ

Here, c is independent of the discretization parameters,
and the inf is taken over all p̂p 6¼ 0 on the form (14). The
condition (26) is stated in numerous books and papers.

Here we emphasize the usefulness of (26) as an operative

tool for determining which elements for p and v that are
‘‘legal’’, in the sense that the elements lead to a solvable

linear system and a stable, convergent method. For ex-

ample, the popular choice of standard bilinear elements

for v and piecewise constant elements for p violates (26),
whereas standard quadratic triangular elements for v
and standard linear triangules for p fulfill (26).

Provided the BB condition is fulfilled, with c not de-
pending on the mesh, one can derive an error estimate

for the discretization of the Navier–Stokes equations:

kv̂v� vk1 þ kp̂p � pk06Cðhkkvkkþ1 þ hlþ1kpklþ1Þ; ð27Þ

This requires the exact solutions v and p to be in

½Hkþ1ðXÞ�d and Hlþ1ðXÞ, respectively. The constant C is
independent of the spatial mesh parameter h. The degree

of the piecewise polynomial used for the velocity and the

pressure is k and l, respectively, (see e.g. [29] or [25]).

The inequality (27) involves the H 1 norm of v, and the
convergence rate of v in L2 norm is one order higher. We
see from the estimate (27) that k ¼ lþ 1 is the optimal
choice, i.e., the velocity is approximated with accuracy

of one higher order than the pressure. For example, the

Taylor–Hood element [76] with quadratic velocity

components and linear pressure gives quadratic and

linear L2-convergence in the mesh parameter for the
velocities and pressure, respectively (under reasonable

assumptions), see [5].
In simpler words, one could say that the computer

resources are not wasted. We get what we can and should

get. Elements that do not satisfy the BB condition may

give an approximation that does not converge to the

solution, and if it does, it may not converge as fast as

one should expect from the order of the elements.

Numerous mixed finite elements satisfying the BB

condition have been proposed over the years. However,
elements not satisfying the BB condition may also work

well. The element with bilinear velocities and constant

pressure, which does violates the BB condition, is pop-

ular and usable in many occasions. A comprehensive

review of mixed finite elements for incompressible vis-

cous flow can be found in [27].

4. Stabilization techniques

Staggered grids or mixed finite elements can be

challenging from an implementational point of view,

especially when using unstructured, adaptive and/or hi-
erarchical grids. Therefore, there has been significant

interest in developing stabilization techniques which

allow standard grids and equal order interpolation of v
and p.

The singularity of the matrix (9) can be circumvented

by introducing a stabilization matrix �D and possibly a

perturbation of the right-hand side, �d,

N Q
QT ��D

� �
u
p

� �
¼ f

��d

� �
; ð28Þ

where � is a parameter that should be chosen either from
physical knowledge or by other means. It can also be a

spatially local parameter, which can be important for

anisotropic meshes and boundary layer problems. There

are mainly three methods used to construct �D, all based
on perturbed versions of the equation of continuity,

r � v ¼ �r2p; ð29Þ
r � v ¼ ��p; ð30Þ

r � v ¼ ��
op
ot

: ð31Þ

The approach (29) was derived with the purpose of

stabilizing pressure oscillations and allowing standard
grids and elements. Section 4.1 deals with this approach.

The Eqs. (30) and (31) were not derived as stabilization

methods, but were initiated from alternative physical

and mathematical formulations of viscous incompress-

ible flow, as we outline in Sections 4.2 and 4.3.

4.1. Pressure stabilization techniques

Finite elements not satisfying the BB condition often

lead to non-physical oscillations in the pressure field. It

may therefore be tempting to introduce a regularization

based on r2p, which will smooth the pressure solution
[8]. One can show that the BB condition can be avoided
by, e.g., introducing a stabilization term in the equation

of continuity as shown in (29). It is common to write this

perturbed equation with a slightly different perturbation

parameter

r � v ¼ �h2r2p; ð32Þ

where � is a constant to be chosen. Now the velocities
and the pressure can be represented with equal order,
standard finite elements. We have introduced an Oðh2Þ
perturbation of the problem, and there is hence no point

in using higher-order elements. Consistent generaliza-

tions that also apply to higher-order elements have been

proposed, a review can be found in Gresho and Sani [27]

and Franca et al. in [30]. The idea behind these methods
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is that one observes that by taking the divergence of (11)

we get an equation that includes a r2p term like in (32),

1

.
r2p ¼ r � ðmr2vÞ þ r � g: ð33Þ

This divergence of (11) can be represented by the weak
formZ

X

�
� 1

.
rp̂p þ mr2v̂vþ g


� rLi dX ¼ 0;

where the pressure basis functions are used as weighting

functions. The left-hand side of this equation can then

be added to (16) with a local weighting parameter �h2K
in each element. The result becomes

Xd

r¼1

Xn

j¼1

bQQr
jiv

r
j � �

Xm
j¼1

Dijpj ¼ ��di; i ¼ 1; . . . ;m; ð34Þ

where

Dij ¼
X
K

h2K

Z
XK

rLi � rLj dX; ð35Þ

bQQr
ij ¼ Qr

ij þ �
X
K

h2K

Z
XK

mr2N r
j

oLi

oxr
dX; ð36Þ

dr
i ¼

X
K

h2K

Z
XK

gr oLi

oxr
dX: ð37Þ

The sum over K is to be taken over all elements; XK is

the domain of element K and hK is the local mesh size.

We see that this stabilization is not symmetric sincebQQr
ij 6¼ bQQr

ji, however it is easy to see that a symmetric

stabilization can be made by an adjustment of (15), such

thatZ
X

�
� 1

.
rp̂p þ mr2v̂vþ g


� r2N r

i dX

is added to (15) with the same local weighting parame-

ter. The use of second-order derivatives excludes linear

polynomials for N r
i . Detailed analysis of stabilization

methods for both Stokes and Navier–Stokes equations

can be found in [82].

One problem with stabilization techniques of the type
outlined here is the choice of �, since the value of � in-
fluences the accuracy of the solution. If � is too small we
will experience pressure oscillations, and if � is too large
the accuracy of the solution deteriorates, since the so-

lution is far from divergence free locally, although it is

divergence free globally [27]. The determination of � is
therefore important. Several more or less complicated

techniques exist, among the simplest is the construction
of �optimal bubbles� which is equivalent to the discreti-
zation using the MINI element [8,27]. Problems with

this approach have been reported; one often experiences

OðhÞ pressure oscillations in boundary layers with

stretched elements, but a fix (multiply � with a proper
factor near the boundary layer) is suggested in [54]. An

adaptive stabilization parameter calculated locally from

properties of the element matrices and vectors is sug-

gested in [78]. This approach gives a more robust

method in the boundary layers.

4.2. Penalty methods

A well-known result from variational calculus is that

minimizing a functional

JðvÞ ¼
Z

X
jrvj2 dX

over all functions v in the function space H 1ðXÞ, such
that vjoX ¼ g where g is the prescribed boundary values,
is equivalent to solving the Laplace problem

r2u ¼ 0 in X; u ¼ g on oX:

The Stokes problem (11) and (12) can be recast into a

variational problem as follows: Minimize

JðwÞ ¼
Z

X
. mrw : rwð � g � wÞdX

over all w in some suitable function space, subject to the
constraint

r � w ¼ 0:
Here, rw:rw ¼

P
r

P
s wr;swr;s is the ‘‘inner product’’ of

two tensors (and wr;s means owr=oxs). As boundary
conditions, we assume that w is known or the stress

vector vanishes, for the functional JðwÞ to be correct
(extension to more general conditions is a simple mat-

ter). This constrained minimization problem can be
solved by the method of Lagrange multipliers: Find

stationary points of

bJJ ðw; pÞ ¼ JðwÞ �
Z

X
pr � wdX

with respect to w and p, �p being the Lagrange multi-
plier. The solution ðw; pÞ is a saddle point of bJJ ,
bJJ ðw; qÞ6 bJJ ðw; pÞ6 bJJ ðv; pÞ
and fulfills the Stokes problem (11) and (12).

The penalty method is a way of solving constrained

variational problems approximately. One works with

the modified functional

eJJ ðwÞ ¼ JðwÞ þ 1
2

k2
Z

X
ðr � wÞ2 dX;

where k is a prescribed, large parameter. The solution is
governed by the equation

1

.
krðr � vÞ þ mr2v ¼ g ð38Þ

or the equivalent mixed formulation,

�mr2vþ 1
.
rp ¼ g; ð39Þ
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r � vþ 1
k
p ¼ 0: ð40Þ

For numerical solution, (38) is a tremendous simplifi-

cation at first sight; Eq. (38) is in fact equivalent to the
equation of linear elasticity, for which robust numerical

methods are well known. The penalty method does not

seem to need mixed elements or staggered grids and is

hence easy to implement.

The governing Eq. (38) is only an approximation to

(11) and (12), where the latter model is obtained in the

limit k ! 1. A too low k leads to mass loss, whereas a
large k value leads to numerical difficulties (known as
the locking problem in elasticity). Because of the large k
parameter, explicit time discretization leads to imprac-

tical small time steps, and implicit schemes in time are

therefore used, with an associated demand of solving

matrix systems. The disadvantage of the penalty method

is that efficient iterative solution of these matrix sys-

tems is hard to construct. The discrete approximations

of the system (38) will be positive definite. However, as
k approach infinity the system will tend to a discrete

Stokes system, i.e., a discrete version of (39) and (40)

with 1=k ¼ 0. Hence, in the limit the elimination of the
pressure is impossible, and this effect results in bad con-

ditioning of the systems derived from (38) when k is large.
The dominating solution techniques have therefore

been variants of Gaussian elimination. However, pro-

gress has been made with iterative solution techniques,
see [67].

The penalty method has a firm theoretical basis for

the Stokes problem [64]. Ad hoc extensions to the full

Navier–Stokes equations are done by simply replacing

Eq. (2) by

p ¼ �kr � v
and eliminating the pressure p. This results in the gov-

erning flow equation

ov

ot
þ v � rv ¼ k

.
rðr � vÞ þ mr2vþ g: ð41Þ

In a sense, this is a nonlinear and time-dependent ver-

sion of the standard linear elasticity equations.
One problem with the penalty method and standard

elements is often referred to as locking. The locking

phenomena can be illustrated by seeking a divergence-

free velocity field subject to homogeneous Dirichlet

boundary conditions on a regular finite element grid.

For the standard linear elements the only solution to

this problem is v ¼ 0. In the case of the penalty method
we see that as k ! 1, v ¼ 0 is the only solution to (41)
unless the matrix associated with the k term is singular.
One common way to avoid locking is, in a finite element

context, to introduce selective reduced integration, which

causes the matrix associated with the k term to be sin-

gular. The selective reduced integration consists in ap-

plying a Gauss–Legendre rule to the k term that is of

one order lower than the rule applied to other terms

(provided that rule is of minimum order for the problem

in question). For example, if bilinear elements are em-

ployed for v, the standard 2� 2 Gauss–Legendre rule is
used for all integrals, except those containing k, which
are treated by the 1� 1 rule. The same technique is
known from linear elasticity problems when the material

approaches the incompressible limit. We refer to [34,64]

or standard textbooks [65,66,89] for more details.

The use of selective reduced integration is justified by

the fact that under certain conditions the reduced inte-

gration is equivalent to consistent integration, which is

defined as the integration rule that is obtained if mixed
elements were used to discretize (39) and (40) before

eliminating the pressure to obtain (38). This equivalence

result does, however, need some conditions on the ele-

ments. For instance, the difference between consistent

and reduced integration was investigated in [19], and

they reported much higher accuracy of mixed methods

with consistent integration when using curved higher-

order elements.
The locking phenomena is related to the finite ele-

ment space and not to the equations themselves. For

standard linear elements the incompressibility constraint

will affect all degrees of freedom and therefore the ap-

proximation will be poor. Another way of circumvent-

ing this problem can therefore be to use elements where

the incompressibility constraint will only affect some of

the degrees of freedom, e.g., the element used to ap-
proximate Darcy–Stokes flow [55].

The penalty formulation can also be justified by

physical considerations (Stokes� viscosity law [23]). We
also mention that the method can be viewed as a velocity

Schur complement method (cf. pressure Schur comple-

ment methods in Section 5.8). The augmented Lagran-

gian method is a regularization technique closely related

to the penalty method. For a detailed discussion we refer
to the book by Fortin and Glowinski [22].

4.3. Artificial compressibility methods

If there had been a term op=ot in the equation of
continuity (2), the system of partial differential equation

for viscous flow would be similar to the shallow water

equations (with a viscous term). Simple explicit time

stepping methods would then be applicable.

To introduce a pressure derivative in the equation of
continuity, we consider the Navier–Stokes equations for

compressible flow:

ov

ot
þ v � rv ¼ � 1

.
rp þ mr2vþ g; ð42Þ

o.
ot

þr � ð.vÞ ¼ 0: ð43Þ

In (42) we have neglected the bulk viscosity since we aim

at a model with small compressibility to be used as an
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approximation to incompressible flow. The assumption

of small compressibility, under isothermal conditions,

suggests the linearized equation of state

p ¼ pð.Þ 	 p0 þ c20ð. � .0Þ; ð44Þ
where c20 ¼ ðop=o.Þ0 is the velocity of sound at the state
ð.0; p0Þ. We can now eliminate the density in the equa-
tion of continuity (43), resulting in

op
ot

þ c20.0r � v ¼ 0: ð45Þ

Eqs. (42) and (45) can be solved by, e.g., explicit forward

differences in time. Here we list a second-order accurate

leap–frog scheme, as originally suggested by Chorin [13]:

v‘þ1 � v‘�1

2Dt
þ v‘ � rv‘ ¼ � 1

.0
rp‘ þ mr2v‘ þ g‘; ð46Þ

p‘þ1 � p‘�1

2Dt
¼ �c20.0r � v‘: ð47Þ

This time scheme can be combined with centered spatial

finite differences on standard grids or on staggered grids;

Chorin [13] applied a DuFort–Frankel scheme on a

standard grid. When solving the similar shallow water

equations, most practitioners apply a staggered grid of

the type in Fig. 1 as this give a more favorable numerical

dispersion relation. Peyret and Taylor [59] recommend
staggered grids for slightly compressible viscous flow for

the same reason.

Artificial compressibility methods are often used to

obtain a stationary solution. In this case, one can in-

troduce a ¼ .0c
2
0 and use a and Dt for optimizing a

pseudo-time evolution of the flow towards a stationary

state. A basic problem with the approach is that the time

step Dt is limited by the inverse of c20, which results in
very small time steps when simulating incompressibility

ðc0 ! 1Þ. Implicit time stepping in (42) and (45) can
then be much more efficient. In fact, explicit temporal

schemes in (46) and (47) are closely related to operator

splitting techniques (Sections 5 and 5.6), where the

pressure Poisson equation is solved by a Jacobi-like it-

erative method [59]. Therefore, the scheme (46) and (47)

is a very slow numerical method unless the flow exhibits
rapid transient behavior of interest. Having said this, we

should also add that artificial compressibility methods

with explicit time integration have been very popular

because of the trivial implementation and paralleliza-

tion.

5. Operator splitting methods

The most popular numerical solution strategies today

for the Navier–Stokes equations are based on operator

splitting. This means that the system (1) and (2) is split

into a series of simpler, familiar equations, such as ad-

vection equations, diffusion equations, advection–diffu-

sion equations, Poisson equations, and explicit/implicit

updates. Efficient numerical methods are much easier to

construct for these standard equations than for the

original system (1) and (2) directly. In particular, the

evolution of the velocity consists of two main steps.
First we neglect the incompressibility condition and

compute a predicted velocity. Thereafter, the velocity is

corrected by performing ‘‘a projection’’ onto the diver-

gence free vector fields.

5.1. Explicit schemes

To illustrate the basics of operator splitting ideas, we

start with a forward step in (1):

v‘þ1 ¼ v‘ � Dtv‘ � rv‘ � Dt
.
rp‘ þ Dtmr2v‘ þ Dtg‘: ð48Þ

The problem is that v‘þ1 does not satisfy the equation of
continuity (2), i.e., r � v‘þ1 6¼ 0. Hence, we cannot claim
that v‘þ1 in (48) is the velocity at the new time level ‘þ 1.
Instead, we view this velocity as a predicted (also called

tentative or intermediate) velocity, denoted here by v�,
and try to use the incompressibility constraint to com-

pute a correction vc such that v‘þ1 ¼ v� þ vc. For more
flexible control of the pressure information used in

the equation for v� we multiply the pressure term rp‘ by
an adjustable factor b:

v� ¼ v‘ � Dtv‘ � rv‘ � Dt
b
.
rp‘ þ Dtmr2v‘ þ Dtg‘: ð49Þ

The v‘þ1 velocity to be sought should fulfill (48) with the
pressure being evaluated at time level ‘þ 1 (cf. Section 2):

v‘þ1 ¼ v‘ � Dtv‘ � rv‘ � Dt
.
rp‘þ1 þ Dtmr2v‘ þ Dtg‘:

Subtracting this equation and the equation for v� yields
an expression for vc:

vc ¼ v‘þ1 � v� ¼ �Dt
.
rðp‘þ1 � bp‘Þ:

That is,

v‘þ1 ¼ v� � Dt
.
rðp‘þ1 � bp‘Þ:

We must require r � v‘þ1 ¼ 0 and this leads to a Poisson
equation for the pressure difference / � p‘þ1 � bp‘:

r2/ ¼ .
Dt

r � v�: ð50Þ

After having computed / from this equation, we can

update the pressure and the velocity:

p‘þ1 ¼ bp‘ þ /; ð51Þ

v‘þ1 ¼ v� � Dt
.
r/: ð52Þ

An open question is how to assign suitable boundary

conditions to /; the function, its normal derivative, or a
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combination of the two must be known at the complete

boundary since / fulfills a Poisson equation. On the

other hand, the pressure only needs to be specified (as a

function of time) at a single point in space, when solving

the original problem (1) and (2). There are two ways of
obtaining the boundary conditions. One possibility is to

compute op=on from (1), just multiply by the unit nor-

mal vector at the boundary. From these expressions one

can set up o/=on. The second way of obtaining the
boundary conditions is derived from (52); if v‘þ1 is
supposed to fulfill the Dirichlet boundary conditions

then

r/joX ¼ Dt
.
ðv‘þ1 � v�ÞjoX ¼ 0; ð53Þ

since v� already has the proper boundary conditions.
This relation is valid on all parts of the boundary where
the velocity is prescribed. Because / is the solution of

(50), o/=on can be controlled, but these homogeneous
boundary conditions are in conflict with the ones de-

rived from (1) and (52) [61]. We see that the boundary

conditions can be derived in different ways, and the

surprising result is that one arrives at different condi-

tions. Additionally we see that after the update (52) we

are no longer in control of the tangential part of the
velocity at the boundary. The problem with assigning

proper boundary conditions for the pressure may result

in a large error for the pressure near the boundary.

Often one experiences an Oð1Þ error in a boundary layer
with width 	

ffiffiffiffiffiffiffi
Dtm

p
. This error can often be removed by

extrapolating pressure values from the interior domain

to the boundary. We refer to Gresho and Sani [27] for a

thorough discussion of boundary conditions for the
pressure Poisson equation.

The basic operator splitting algorithm can be sum-

marized as follows.

1. Compute the prediction v� from the explicit equation
(49).

2. Compute / from the Poisson equation (50).

3. Compute the new velocity v‘þ1 and pressure p‘þ1 from
the explicit equations (51) and (52).

Note that all steps are trivial numerical operations, ex-

cept for the need to solve the Poisson equation, but this

is a much simpler equation than the original problem (1)

and (2).

5.2. Implicit velocity step

Operator splittings based on implicit difference

schemes in time are more robust and stable than the

explicit strategy just outlined. To illustrate how more

implicit schemes can be constructed, we can take a

backward step in (1) to obtain a predicted velocity v�:

v� þ Dtv� � rv� þ Dt
b
.
rp‘ � Dtmr2v� þ Dtg‘þ1 ¼ v‘:

ð54Þ
Alternatively, we could use the more flexible h-rule

in time (see below). Eq. (54) is nonlinear, and a simple

linearization strategy is to use v‘ � rv� instead of

v� � rv�,

v� þ Dtv‘ � rv� þ Dt
b
.
rp‘ � Dtmr2v� þ Dtg‘þ1 ¼ v‘:

ð55Þ
Also in the case we keep the nonlinearity, most lin-

earization methods end up with solving a sequence of
convection–diffusion equations like (55). The v‘þ1 ve-
locity is supposed to fulfill

v‘þ1 þ Dtv‘ � rv‘þ1 þ Dt
.
rp‘þ1 � Dtmr2v‘þ1 þ Dtg‘þ1 ¼ v‘:

The correction vc is now v‘þ1 � v�, i.e.,

vc ¼ sðvcÞ þ Dt
.
r/; sðvcÞ ¼ Dtð�v‘ � rvc þ mr2vcÞ:

ð56Þ
Note that so far we have not done anything ‘‘illegal’’,

and this system can be written as a mixed system,

vc � sðvcÞ þ Dt
.
r/ ¼ 0; ð57Þ

r � vc ¼ r � v�: ð58Þ
It is then common to neglect or simplify s, such that the
problem changes into a mixed formulation of the Pois-

son equation,

vc � Dt
.
r/ ¼ 0; ð59Þ

r � vc ¼ r � v�: ð60Þ
Elimination of vc yields a Poisson equation like (50),

r2/ ¼ .
Dt

r � v�: ð61Þ

The problems at the boundary that were discussed in the

previous section apply to this method as well. Different

choices of and approximations to s give rise to different
methods. We shall come back to this point later when

discretizing in space prior to splitting the original
equations.

To summarize, the sketched implicit operator split-

ting method consists of solving an advection–diffusion

equation (55), a Poisson equation (61), and then per-

forming two explicit updates (we assume that s is ne-
glected):

v‘þ1 ¼ v� � rDt
.

/; ð62Þ

p‘þ1 ¼ bp‘ þ /: ð63Þ
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The outlined operator splitting approaches reduce the

Navier–Stokes equations to a system of standard

equations (explicit updates, linear convection–diffusion

equations, and Poisson equations). These equations can

be discretized by standard finite elements, that is, there is
seemingly no need for mixed finite elements, a fact that

simplifies the implementation of viscous flow simulators

significantly.

5.3. A more accurate projection method

In Brown et al. [10] an attempt to remove the bound-

ary layer introduced in the pressure by the projection

method discussed above is described, cf. also [17,52].
Previously, in Sections 5.1 and 5.2, we neglected the

term sðvcÞ, since the scheme was only first-order in time.
This resulted in a problem with the boundary conditions

on /. If the scheme is second-order in time, we cannot
remove this term. In [10] a second-order scheme in ve-

locity and pressure is described. In addition, many pre-

vious attempts to construct second-order methods for

the incompressible Navier–Stokes equations are re-
viewed there. In order to describe the approach let us

start to form a centered scheme at time level ‘þ 1=2
for the momentum equation:

v‘þ1 � v‘

Dt
þrp‘þ1=2 ¼ �½v � rv�‘þ1=2 þ m

2
r2ðv‘þ1 þ v‘Þ

þ g‘þ1=2; ð64Þ
r � v‘þ1 ¼ 0: ð65Þ
Here the approximation ½v � rv�‘þ1=2 is assumed to be
extrapolated from the solution on previous time levels.
A predicted velocity is computed by

v�;‘þ1 � v�;‘

Dt
¼ �½v � rv�‘þ1=2 þ m

2
r2ðv�;‘þ1 þ v�;‘Þ þ g‘þ1=2:

ð66Þ
Note that since we now use v�;‘ instead of v‘ as the initial
solution at level ‘, v� follows its own evolution equation.
The initial conditions v�;0 ¼ v0 should be used. Sub-
tracting (66) from (64) we obtain an equation for the

velocity correction, vc;‘þ1 ¼ v‘þ1 � v�;‘þ1,

vc;‘þ1 � vc;‘

Dt
þrp‘þ1=2 ¼ m

2
r2ðvc;‘þ1 þ vc;‘Þ: ð67Þ

Observe that this is a diffusion equation for vc with a
gradient, �rp, as a forcing term. If we assume that this
implies that vc is itself a gradient we can conclude that

v‘þ1 � v�;‘þ1 ¼ vc;‘þ1 ¼ r/‘þ1 ð68Þ
for a suitable function /‘þ1. From r � v‘þ1 ¼ 0 we get
�r2/‘þ1 ¼ �r � v�;‘þ1: ð69Þ
To solve this equation, it remains to assign proper

boundary conditions to /‘þ1. From the discussion in

Section 5.1 we know that the boundary conditions on /

can be determined such that vlþ1 fulfills the normal
components (or one tangential component), i.e.,

o/
on

����
oX

¼ n � ðv�;‘þ1 � vlþ1ÞjoX ¼ 0: ð70Þ

We have now fixed the normal components of the

boundary conditions on v�;‘þ1, but we have lost control
over the tangential part. In [10] they therefore propose

to use an extrapolated value for /̂/‘þ1 to determined the

tangential parts of v� such that

t � v�;‘þ1joX ¼ t � ðv‘þ1 þr/̂/‘þ1ÞjoX; ð71Þ
where t is a tangent vector.
A relation between p and / is computed by inserting

(68) into (67) to get the pressure update,

p‘þ1 ¼ /‘þ1 � /‘

Dt
� m
2
r2ð/‘þ1 þ /‘Þ: ð72Þ

To summerize this approach a complete time step

consists of

1. Evolve v� by (66) and the boundary conditions given
by (70) and (71).

2. Solve (69) for /‘þ1 using the boundary condition (70).

3. Compute v‘þ1 and p‘þ1 using (68) and (72).

We refer to Brown et al. [10] for more details. A

critical and non-obivious step seems to be the correct-

ness of the derivation of (68) from (67). This may de-
pend on the given boundary conditions.

5.4. Relation to stabilization techniques

The operator splitting techniques in time, as ex-

plained in Sections 5.1 and 5.2, seem to work quite well
in spite of their simplicity compared to the original

coupled system (1) and (2). Some explanation of why the

method works can be found in [62,63,73,74]. The point

is that one can show that the operator splitting method

from Section 5.2 is equivalent to solving a system like (1)

and (2) with an old pressure in (1) and a stabilization

term Dtr2p on the right-hand side of (2). This stabili-
zation term makes it possible to use standard elements
and grids. Other suggested operator splitting methods

[63] can be interpreted as a Dtop=ot stabilization term in
the equation of continuity, i.e., a method closely related

to the artificial compressibility scheme from Section 4.3.

5.5. Fractional step methods

Fractional step methods constitute another class of

popular strategies for splitting the Navier–Stokes

equations. A typical fractional step approach [2,4,10,20,

87] may start with a time discretization where the con-

vective term is treated explicitly, whereas the pressure

and the viscosity term are treated implicitly:
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v‘þ1 � v‘ þ Dtv‘ � rv‘

¼ �Dt
b
.
rp‘þ1 þ Dtmr2v‘þ1 þ Dtg‘þ1; ð73Þ

r � v‘þ1 ¼ 0: ð74Þ

One possible splitting of (73) and (74) is now

v� � v‘ þ Dtv‘ � rv‘ ¼ 0; ð75Þ

v�� ¼ v� þ Dtmr2v�� þ Dtg‘þ1; ð76Þ

v‘þ1 ¼ v�� � Dt
.
rp‘þ1; ð77Þ

r � v‘þ1 ¼ 0: ð78Þ

Notice that combining (75)–(77) yields (73). Eq. (75) is a

pure advection equation and can be solved by appro-
priate explicit methods for hyperbolic problems. Eq.

(76) is a standard heat conduction equation, with im-

plicit time differencing. Finally, (77) and (78) is a mixed

Poisson problem, which can be solved by special meth-

ods for mixed Poisson problems, or one can insert v‘þ1

from (77) into (78) to obtain a pressure Poisson equa-

tion,

r2p‘þ1 ¼ .
Dt

r � v��: ð79Þ

After having solved this equation for p‘þ1, (77) is used to
find the velocity v‘þ1 at the new time level. Using (79)
and then (77) instead of solving (77) and (78) simulta-

neously has the advantage of avoiding staggered grids or
mixed finite elements. However, (79) requires extra

pressure boundary conditions at the whole boundary

as discussed previously.

The fractional step methods offer flexibility in the

splitting of the Navier–Stokes equations into equations

that are significantly simpler to work with. For example,

in the presented scheme, one can apply specialized

methods to treat the v � rv term because this term is now
isolated in a Burgers equation (75) for which numerous

accurate and efficient explicit solution methods exist.

The implicit time stepping in the scheme is isolated in a

standard heat or diffusion equation (76) whose solution

can be obtained very efficiently. The last equation (79) is

also a simple equation with a wealth of efficient solution

methods. Although each of the equation can be solved

with good control of efficiency, stability, and accuracy, it
is an open question of how well the overall, compound

solution algorithm behaves. This is the downside of all

operator splitting methods, and therefore these methods

must be used with care.

More accurate (second-order in Dt) fractional step
schemes than outlined here can be constructed, see [16]

for a framework and [10] for review.

5.6. Discretizing in space prior to discretizing in time

The numerical strategies in Sections 5.1–5.4 are based

on discretizing (1) and (2) first in time, to get a set of

simpler partial differential equations, and then discret-
izing the time-discrete equations in space. One funda-

mental difficulty with this approach is that we derive a

second-order Poisson equation for the pressure itself or

a pressure increment. Such a Poisson equation implies a

demand for more boundary conditions for p than what

is required in the original system (1) and (2), as discussed

in the previous section. The cause of these problematic,

and unnatural, boundary conditions on the pressure is
the simplification of the system (57) and (58) to (59) and

(60), where the term sðvcÞ, containing Dtmr2vc, is ne-
glected. If we keep this term the system (57) and (58) is

replaced by

ð1� Dtmr2Þvc � Dt
.
r/ ¼ 0; ð80Þ

r � vc ¼ r � v�: ð81Þ

This system is a modified stationary Stokes system,

which can be solved under the correct boundary con-

ditions on the velocity field vc. However, this system
cannot easily be reduced to a simple Poisson equation

for the pressure increment /. Instead, we have to solve
the complete coupled system in vc and /, and when this
system is discretized we obtain algebraic systems of the

form (9). Hence, the implementation of the correct

boundary conditions seems to be closely tied to the need

to solve discrete saddle-point systems of the form (9).

Another attempt to avoid constructing extra consis-
tent boundary conditions for the pressure is to first

discretize the original system (1) and (2) in space. Hence,

we need to discretize both the dynamic equation and the

incompressibility conditions, using discrete approxima-

tions of the pressure and the velocity. This will lead to

a system of ordinary differential equations with respect

to time, with a set of algebraic constraints representing

the incompressibility conditions, and with the proper
boundary conditions built into the spatial discretization.

A time stepping approach, closely related to operator

splitting, for such constrained systems is to first facilitate

an advancement of the velocity just using the dynamic

equation. As a second step we then ‘‘project’’ the ve-

locity onto the space of divergence free velocities. The

two steps in this procedure are closely related to the

approach discussed in Sections 5.1 and 5.2. For exam-
ple, Eq. (55) can be seen as a dynamic step, while (59)

and (60), or simply (61), can be seen as the projection

step. However, the projection induced by the system (59)

and (60) is not compatible with the boundary conditions

of the original system (and this may lead to large error

in the pressure near the boundary). In contrast, the
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projection introduced by the system (80) and (81) has

the correct boundary conditions.

In order to discuss this approach in greater detail let

us apply either a finite element, finite volume, finite

difference, or spectral method to discretize the spatial
operators in the system (1) and (2). This yields a system

of ordinary differential equations, which can be ex-

pressed in the following form:

M _uuþ KðuÞu ¼ �Qpþ Auþ f ; ð82Þ
QTu ¼ 0: ð83Þ
Here, u is a vector of velocities at the (velocity) grid
points, p is a vector of pressure values at the (pressure)
grid points, K is a matrix arising from discretizing v � r,
M is a mass matrix (the identity matrix I in finite dif-
ference/volume methods), Q is a discrete gradient op-

erator, QT is the transpose of Q, representing a discrete
divergence operator, and A is a discrete Laplace oper-
ator. The right-hand side f contains body forces. Stable

discretizations require mixed finite elements or staggered

grids for finite volume and difference methods. Alter-

natively, one can add stabilization terms to the equa-

tions. The extra terms to be added to (82) and (83) are

commented upon in Section 5.8.

We can easily devise a simple explicit method for (82)

by using the same ideas as in Section 5.1. A tentative or
predicted discrete velocity field u� is computed by

Mu� ¼ Mv‘ þ Dtð�Kðu‘Þu‘ � bQp‘ þ Au‘ þ f ‘Þ: ð84Þ
A correction uc is sought such that u‘þ1 ¼ u� þ uc fulfills
QTu‘þ1 ¼ 0. Subtracting u� from u‘þ1 yields

uc ¼ �DtM�1Q/; / � p‘þ1 � bp‘: ð85Þ
Now a projection step onto the constraint QTu‘þ1 ¼ 0
results in an equation for /:

QTM�1Q/ ¼ 1

Dt
QTu�: ð86Þ

This is a discrete Poisson equation for the pressure. For

example, employing finite difference methods in a spatial

staggered grid yields M ¼ I and QTQ is then the stan-

dard 5- or 7-star discrete Laplace operator. The matrix

QTM�1Q is a counterpart to matrices arising from r2 in
the Poisson equations for / in Sections 5.1 and 5.2.
Having computed /, the new pressure and velocity

values are found from

p‘þ1 ¼ bp‘ þ /; ð87Þ
u‘þ1 ¼ u� � DtM�1Q/: ð88Þ

5.7. Classical schemes

In this subsection we shall present a common set-

ting for many popular classical schemes for solving the

Navier–Stokes equations. We start with formulating an

implicit scheme for (82) using the h-rule for flexibility;

h ¼ 1 gives the backward Euler scheme, h ¼ 1=2 results
in the trapezoidal rule (or a Crank–Nicolson scheme),

and h ¼ 0 recovers the explicit forward Euler scheme
treated above. The time-discrete equations can be writ-

ten as

Nu‘þ1 þ DtQp‘þ1 ¼ q; ð89Þ
QTu‘þ1 ¼ 0; ð90Þ
where

N ¼ M þ hDtRðu‘Þ; ð91Þ
Rðu‘Þ ¼ Kðu‘Þ � A; ð92Þ
q ¼ ðM � ð1� hÞDtRðu‘ÞÞu‘ þ Dtf ‘þ1Þ ð93Þ
are introduced to save space in the equations. Observe
that we have linearized the convective term by using

Rðu‘Þ on the left-hand side of (89). One could, of course,
resolve the nonlinearity by some kind of iteration in-

stead.

To proceed, we skip the pressure or use old pressure

values in to produce a predicted velocity u�:

Nu� ¼ q� bDtQp‘: ð94Þ
The correction uc ¼ u‘þ1 � u� is now governed by

Nuc þ DtQ/ ¼ 0; ð95Þ
QTuc ¼ QTu�; ð96Þ
The system (95) and (96) for ðuc;/Þ corresponds to the
system (80) and (81). Eliminating uc gives

QTN�1Q/ ¼ � 1

Dt
QTu�: ð97Þ

We shall call this equation the Schur complement pres-
sure equation [84].

Solving (97) requires inverting N , which is not an
option since N�1 is dense and N is sparse. Several rough

approximations eNN�1 to N�1 have therefore been pro-

posed. In other words, we solve

QT eNN�1Q/ ¼ � 1

Dt
QTu�: ð98Þ

The simplest approach is to letN be an approximation to
M only, i.e., eNN ¼ I in finite difference methods and eNN
equal to the lumped mass matrix M in finite element

methods. The approximation eNN ¼ I leaves us with a
standard 5- or 7-star Poisson equation. With h ¼ 0 we
recover the simple explicit scheme from the end of Section
5.6, whereas h ¼ 1 gives an implicit backward scheme
of the same nature as the one described in Section 5.2.

To summarize the algorithm at a time level, we first

make a prediction u� from (94), then solve (98) for the

pressure increment /, and then update the velocity and

pressure by

u‘þ1 ¼ u� � DtN�1Q/; p‘þ1 ¼ bp‘ þ /: ð99Þ
Let us now comment upon classical numerical methods

for the Navier–Stokes equations and show how they can
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be considered as special cases of the algorithm in the

previous paragraph. The history of operator splitting

methods starts in the mid and late 1960s. Harlow and

Welch [31] suggested an algorithm which corresponds to

b ¼ 0 in our set up and centered finite differences on a
staggered spatial grid. The Poisson equation for / hence

becomes an equation for p‘þ1 directly. Chorin [14] de-
fined a similar method, still with b ¼ 0, but using a non-
staggered grid. Temam [77] developed more or less the

same method independently, but with explicit time

stepping. Hirt and Cook [32] introduced b ¼ 1 in our
terminology. All of these early contributions started

with spatially discrete equations and performed the
splitting afterwards. The widely used SIMPLE method

[58] consists of choosing h 6¼ 0

eNN ¼ diagðNÞ ¼ diagðM þ hDtRðu‘ÞÞ;

when solving (98). A method very closely related to

SIMPLE is the segregated finite element approach, see

e.g. Chapter 7.3 in [35].
Most later developments follow either the approach

for the current subsection or the alternative view from

Sections 5.1 and 5.2. Much of the focus in the history of

operator splitting methods has been on constructing

second- and higher-order splittings in the framework of

Sections 5.1–5.3, and 5.5, see e.g. [2,4,10].

We remark that the step for u� is unnecessary if we
solve the system (95) and (96) for ðuc;/Þ correctly, ba-
sically we then solve the ‘‘exact’’ system (89) and (90).

The point is that we solve (95) and (96) approximately

because we replace N in (95) by eNN when we eliminate uc

to form the pressure Eq. (98). The next section presents

a framework where the classical methods from the cur-

rent section appear as one iteration in an iterative so-

lution procedure for the fully implicit system (89) and

(90).

5.8. Fully implicit methods

Rannacher [63] and Turek [84] propose a general
framework to analyze the efficiency and robustness of

operator splitting methods. We first consider the fully

implicit system (89) and (90). Eliminating u‘þ1 yields (cf.
the similar elimination for the Stokes problem in Section

3.2)

QTN�1Qp‘þ1 ¼ 1

Dt
QTN�1q; ð100Þ

which we can call the Schur complement pressure equa-
tion for the implicit system. Notice that we obtain the

same solution for the pressure in both (100) and (89) and

(90). The velocity needs to be computed, after p‘þ1 is
from (89), which requires an efficient solution of linear

systems with N as coefficient matrix (multigrid is an

option here).

Turek [84] suggests that many common solution

strategies can be viewed as special cases of a precondi-

tioned Richardson iteration applied to the Schur com-

plement pressure equation (100). Given a linear system

Bp‘þ1 ¼ b;

the preconditioned Richardson iteration reads

p‘þ1;kþ1 ¼ p‘þ1;k � C�1ðBp‘þ1;k � bÞ; ð101Þ
where C�1 is a preconditioner and k an iteration coun-

ter. The iteration at a time level is started with the

pressure solution at the previous time level:

p‘þ1;0 ¼ p‘:

Applying this approach to the Schur complement pres-

sure equation (100) gives the recursion

p‘þ1;kþ1 ¼ p‘þ1;k � C�1ðQTN�1Qp‘þ1;k � 1

Dt
QTN�1qÞ:

ð102Þ
We now show that the operator splitting methods from

Section 5.7, based on solving u� from (94), solving (98)

for /, and then updating the velocity and pressure with

(99), can be rewritten in the form (102). This allows us to

interpret the methods from Section 5.7 in a more general
framework and to improve the numerics and generate

new schemes.

To show this equivalence, we start with the pressure

update (99) and insert (98) and (94) subsequently:

p‘þ1 ¼ p‘ þ / ð103Þ

¼ p‘ þ ðQT eNN�1QÞ�1 1
Dt

QTu� ð104Þ

¼ p‘ þ ðQT eNN�1QÞ�1 1
Dt

QT

� ðN�1q� DtN�1Qp‘Þ; ð105Þ
¼ p‘ � ðQT eNN�1QÞ�1

� QTN�1Qp‘
�

� 1

Dt
QTN�1q


: ð106Þ

We have assumed that b ¼ 1, since this is the case in the
Richardson iteration. Eq. (106) can be generalized to an

iteration on p‘þ1:

p‘þ1;kþ1 ¼ p‘þ1;k � ðQT eNN�1QÞ�1 QTN�1Qp‘þ1;k
�

� 1

Dt
QTN�1q


: ð107Þ

We see that (107) is consistent with (106) for the first
iteration k ¼ 1 if p‘þ1;0 ¼ p‘. Moreover, we notice that
(107) is identical to (102), provided we choose the pre-

conditioner C as QT eNNQ. In other words, classical op-
erator splitting methods from Section 5.7 can be viewed

as one preconditioned Richardson iteration on the fully

implicit system (89) and (90) (though formulated as

(100)). If we perform more iterations in (107), we
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essentially have an Uzawa algorithm for the original

fully implicit system (89) and (90). Using more than one

iteration corresponds to iterating on the pressure in (94),

i.e., we solve (94) and (98) more than once at each time

level, using the most recent pressure approximation to
p‘þ1 in (94).
The various choices of eNN outlined in Section 5.7 re-

semble various classical operator splitting methods

when used in the preconditioner C ¼ QT eNNQ in the

framework (107). This includes explicit and implicit

projection methods, pressure correction methods, SIM-

PLE variants, and also Uzawa methods and the Vanka

smoother used in multigrid methods [83].
With the classical operator splitting methods refor-

mulated as one iteration of an iterative method for the

original fully implicit system, one can more easily attack

the fully implicit system directly; the building blocks

needed are fast solvers for N�1 and ðQT eNNQÞ�1, but
these are already available in software for the classical

methods. In this set up, solving the fully implicit mixed

system (89) and (90) is from an implementational point
of view not more complicated than using a classical

operator splitting method from Section 5.7 method re-

peatedly. This is worth noticing because people tend to

implement and use the classical methods because of their

numerical simplicity compared with the fully implicit

mixed system.

Noticing that (107) is an Uzawa method, we could

introduce inexact Uzawa methods [18], where N�1 is
replaced by eNN�1 in the right-hand side of (107) (with

some additional terms for making (107) consistent with

the original linear system). This can represent significant

computational savings. One view of such an approach is

that one speeds up solving the predictor step (94) when

we iterate over the predictor–correction equations in the

classical methods.

The system (82) and (83) can easily be augmented
with stabilitzation terms, resulting in a modification of

the system (89) and (90):

Nu‘þ1 þ DtQp‘þ1 ¼ q; ð108Þ

QTu‘þ1 � �Dp‘þ1 ¼ ��d: ð109Þ

Eliminating u‘þ1 yields

ðDtQTN�1Q þ �DÞp‘þ1 ¼ QTN�1qþ �d: ð110Þ

With this stabilization one can avoid mixed finite ele-

ments or staggered finite difference/volume grids.

Let us now discuss how the preconditioner C can be

chosen more generally. If we define the error in iteration
k as ek ¼ p‘þ1;k � p‘þ1, one can easily show that

ek ¼ ðI � CBÞek�1. One central question is if just one
iteration is enough and under what conditions the iter-

ation is convergent. The latter property is fulfilled if the

modulus of the eigenvalues of the amplification matrix

I � CB are less than unity. Hence, the choice of C is

important both with respect to efficiency and robustness

of the solution method.

Turek proposes an efficient preconditioner C�1 for

(101):

C�1 ¼ aRB
�1
R þ aDB

�1
D þ aKB

�1
K ; ð111Þ

where

• BR is an optimal (reactive) preconditioner for Q
TMQ,

• BD is an optimal (diffusive) preconditioner for Q
TAQ,

• BK is an optimal (convective) preconditioner for
QTKQ.

Both BR and BD can be constructed optimally by stan-
dard methods; BR can be constructed by a multigrid
sweep on a Poisson-type equation, and BD can be made
simply by an inversion of a lumped mass matrix.

However, no optimal preconditioner is known for BK. It
is assumed that �D does not change the condition
number significantly and it is therefore not considered in

the preconditioner.

It is also possible to improve the convergence and in

particular the robustness by utilizing other iterative

methods than the Richardson iteration, which is the

simplest iterative method of all. One particular attrac-

tive class of methods is the Krylov (or conjugate gra-

dient-like) methods. Methods like GMRES are in
principle always convergent, but the convergence is

highly dependent on the condition number of CB. The
authors are pursuing these matters for future research. If

approximate methods (multigrid or Krylov solvers) are

used for N�1 too, we have a nested iteration, and for the

outer Krylov method to behave as efficiently as ex-

pected, it is necessary to solve the inner iterations ac-

curately. Inexact Uzawa methods would hence be
attractive since they only involve eNN�1 in the inner iter-

ation.

There is also a link between operator splitting meth-

ods and fully implicit methods without going through

the Schur complement pressure equation. In [70] they

considered preconditioners for the Stokes problem of

the form

N Q
QT 0

� �
u
p

� �
¼ q

0

� �
ð112Þ

and this lead to preconditioners like

C1 0
0 C2

� �
; ð113Þ

where C1 should be an approximation of the inverse of

N and C2 of Q
TN�1Q. This ‘‘operator splitting’’ pre-

conditioner was proved to be optimal provided that C1

and C2 were optimal preconditioners for N and

QTN�1Q, respectively. This preconditioner has been
extended to the time-dependent fully coupled Stokes
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problem in [7] and a preconditioner similar to the one

proposed by Turek in (111) is considered in [56].

6. Parallel computing issues

Laminar flow computations in simple geometries,

involving a few thousand unknowns, can now be carried

out routinely on PCs or workstations. Nevertheless,

more demanding flows met in industrial and scientific
applications easily require a grid resolution correspond-

ing to 105–109 unknowns and hence the use of parallel

computers. The suitability of the methods for solving

the Navier–Stokes equations on parallel computers is

therefore of importance.

The operator splitting methods from Section 5 reduce

the Navier–Stokes equations to a sequence of simpler

problems. For example, the explicit scheme from Section
5.1 involves explicit updates, in the form of matrix-

vector products and vector additions, and the solution

of a Poisson equation. Vector additions are trivial to

parallelize, and the parallel treatment of products of

sparse matrices and vectors is well known. Several

methods have been shown to be successful for parallel

solution of the Poisson equation, but multigrid seems to

be particularly attractive as the method is the most ef-
fecient solution approach for the Poisson equation on

sequential computers and its concurrent versions are

well developed and can be realized with close to optimal

speed-up. Using multigrid as a preconditioner for a

conjugate gradient method does not alter this picture,

since the outer conjugate gradient method just involves

inner products of vectors, vector additions, and matrix-

vector products. In conclusion, the classical explicit
operator splitting methods are very well suited for par-

allel computing.

The implicit operator splitting methods require, in

addition to explicit updates and the solution of a

Poisson equation, also the solution of a convection–

diffusion equation. Domain decomposition methods

at the partial differential equation level can split the

global convection–diffusion equation into a series of
smaller convection–diffusion problems on subdomains,

which can be solved in parallel. The efficiency of this

method depends on the convergence rate of the itera-

tion, which shows dependence on the nature of the

convection. To achieve sufficient efficiency of the iter-

ation, the domain decomposition approach must be

combined with a coarse grid correction [75]. Alterna-

tively, the convection–diffusion equation can be viewed
as a linear system, with non-symmetric coefficient ma-

trix, to be solved in parallel. Using a conjugate gra-

dient-like method, such as GMRES og BiCGStab,

combined with multigrid as preconditioner, yields a

solution method whose parallel version is well estab-

lished and can be realized with close to optimal speed-

up. Other popular preconditioners may be more chal-

lenging to parallelize well; incomplete factorizations fall

in this category. The overall performance of the par-

allel convection–diffusion solver depends on choices

of numerical degrees of freedom in the linear solver,
but these difficulties are present also in the sequential

version of the method. To summarize, the implicit op-

erator splitting methods are well suited for parallel

computers if a good multigrid or domain decomposi-

tion preconditioner can be found for the corresponding

sequential problem.

The classical fully implicit method for the Navier–

Stokes equations normally applies variants of Gaussian
elimiation as linear solver (after a linearization of the

nonlinear system of algebraic equations by, e.g., some

Newton-like method). Parallel versions of sparse and

banded Gaussian elimination procedures are being de-

veloped, but such methods are much more difficult to

implement efficiently on parallel computers than the

iterative solvers discussed above.

Solving the fully implicit system for the Navier–
Stokes equations by iterative strategies (again after a

linearization of the nonlinear system), basically means

running an iterative method, like Richardson iteration

or a Krylov solver, combined with a suitable precondi-

tioner. In the case we choose the preconditioner to be

typical steps in operator splitting methods, as described

in Section 5.8, fully implicit methods parallelize with the

same efficiency as the corresponding implicit operator
splitting methods.

The pressure stabilization technique from Section 4.1

is actually a way of formulating the equation of conti-

nuity and get rid of the mixed finite element or staggered

grid requirement. This approach is typically used in

combination with operator splitting or fully implicit

methods, and the extra stabilization terms do not

change the parallelization of those methods.
Penalty methods lead to a kind of transient, nonlinear

equation of elasticity. After discretizing in time and re-

solving the nonlinearity, we are left with a partial dif-

ferential equation or linear system of the same nature as

the equation of elasticity. The problem, however, is that

the Lame constant k in this equation is large, which
makes it hard to construct efficient iterative methods.

Large-scale computing with penalty methods is relevant
only if efficient iterative methods for the sequential

problem can be constructed. When these methods are

based on domain decomposition and/or involve vector

operations, matrix-vector products, and multigrid

building blocks, parallelization is feasible, see [68] for a

promising approach.

The classical artificial compressibility method from

Section 4.3 is a purely explicit method, just containing
explicit updates, and is hence trivial to parallelize well.

Also when implicit time discretizations are used, we get

matrix systems that can, in principle, be solved in a
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parallel fashion using the same methods as we described

for the implicit operator splitting approach.

7. Software

Development of robust CFD software is a compli-

cated and time consuming task. Most scientists and

engineers who need to solve incompressible viscous fluid

flow problems must therefore rely on available software
packages. An overview of CFD software is available on

the Internet [37], and here we shall just mention a few

widely distributed packages.

PHOENICS [50], which appeared in 1981, was the

first general-purpose tool for CFD and is now probably

the most widely used CFD software. The numerical

foundation is the finite volume method in the notation

of Patankar [58]. The user can add code and solve
equations that are not supported by the package.

FLUENT [46] is another general-purpose CFD package

that addresses laminar and turbulent incompressible

flow, also in combination with combustion and multiple

phases. The spatial discretization employs a finite vol-

ume technique applicable to unstructured meshes. FI-

DAP [43] is a general-purpose fluid flow package quite

similar to FLUENT, but it applies finite elements for
the spatial discretization. CFX [39] is another modern,

general-purpose package addressing complex flow prob-

lems in the process and chemical industries, including

turbulence, multi-phase flow, bubble-driven flow, com-

bustion, flames, and so on. Flow-3D [45] offers special

techniques for and specializes in incompressible viscous

free surface flow, but the package can be used for more

standard external and confined flows as well. Another
general-purpose CFD package is CFD2000 [38], which

uses finite volumes on curvelinear grids and handles

incompressible as well as compressible flows, with tur-

bulence, heat transfer, multiple phases, and chemical

reactions. CFDþþ is a finite volume-based solver with

particular emphasis on turbulent flow. It handles many

different types of grids and flow regimes (from incom-

pressible to hypersonic). ANSYS/FLOTRAN [44] is a
CFD package contained in the ANSYS family of finite

element codes. The tight integration with other ANSYS

codes for heat transfer, elasticity, and electromagnetism

makes it feasible to perform multi-physics simulations,

e.g., fluid–structure interactions and micro-electro-me-

chanical systems (MEMS). The CFD software mentioned

so far covers advanced, commercial, general-purpose

tools that offer a complete problem solving environ-
ment, with user-friendly grid generation and visualiza-

tion facilities in addition to the numerical engines.

FEATFLOW [42] is a free package implementing the

framework from Section 5.8, with finite elements in

space, multigrid for solving linear and nonlinear sys-

tems, and an emphasis on computational efficiency and

robustness. FEMLAB is a package built on top of

Matlab and offers easy set-up of incompressible flow

problems, also coupled with heat transfer, electromag-

netism, and elasticity. Fastflo [41] is a code of a similar

nature. Mouse [48] is a modern finite volume-based
software library, packed with ready-made CFD pro-

grams. Some flexible, general-purpose, programmable

environments and libraries with important applications

to CFD are Diffpack [40], FOAM [47], Overture [49],

and UG [51].

The quality and robustness of the numerics even in

advanced packages, especially when simulating complex

multi-fluid flows, may be questionable as we know that
our understanding of how to solve the building block (1)

and (2) is still limited. More benchmark problem ini-

tiatives [84] are needed to classify flow cases and meth-

ods whose numerical results are reliable.

The complexity of CFD applications makes a demand

for flexibility, where different splitting approaches, dif-

ferent space and time discretizations, different linear and

nonlinear system solvers, and different governing equa-
tions can be freely combined. Much of the current CFD

software, written as large, stand-alone Fortran 77 pro-

grams, lacks this freedom of choice because of an in-

flexible software design. There is now a growing interest

in methodologies for better design of CFD software

based on, e.g., object-oriented programming techniques

[40,47–49,53,57,81,85].

8. Future directions of research

During the last decades there has been tremendous
progress in computational fluid dynamics. Even if some

of the most basic tools are well understood by now,

there are still challenging problems related to numerical

methods for incompressible Navier–Stokes equation. In

fact, the simplified Stokes problem (11) and (12), espe-

cially when (11) is augmented with a time derivative

ov=ot, is not fully understood when it comes to stable
discretizations [56], efficient solution of the resulting
linear systems (in an implicit formulation), as well as a

priori and a posteriori error estimates. It therefore seems

fruitful to still address simplified versions of the Navier–

Stokes equations to develop and understand numerical

methods.

The most popular time stepping methods for the

Navier–Stokes equation are not fully implicit. As ex-

plained in Section 5.1, an operator splitting strategy can
be used to essentially decouple the updating of the ve-

locity and the pressure. However, the choice of bound-

ary conditions for the pressure in these procedures is

problematic. The pressure is closely tied to the incom-

pressibility condition for the velocity, and any decou-

pling therefore has drawbacks. As in many other fields,
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engineers prefer to work with robust and stable nu-

merical engines, even at a cost of decreased computa-

tional efficiency. This usually implies that fully implicit

codes are preferred in industry. Hence, we think that

fully implicit schemes, like the ones discussed in Sections
5.2 and 5.8 should be further developed. The study of

efficient preconditioners, which are robust with respect

to physical and numerical parameters, seems essential.

An attractive framework would be to reuse the experi-

ence and knowledge built up around (classical) operator

splitting schemes as preconditioners for the more robust

fully coupled and implicit scheme. For efficiency, mul-

tigrid cycles should be used in such preconditioners, but
the optimal combination of multigrid building blocks

(smoothers, cycling strategies, etc.) are not yet known

for fully implicit formulations. In addition, the use of

parallel computational techniques, like domain decom-

position algorithms, is essential for performing fine scale

simulations. As the gap between CPU power and

memory access efficiency increases, it might be ques-

tionable whether today�s numerics are well suited for the
coming generation of high-performance computers. This

calls for paying closer attention to the interplay between

hardware and numerics.

Another topic which will be essential for doing fine

scale computations is the development of adaptive al-

gorithms using suitable error estimators. In particular,

for simulations in complex geometries such tools will be

unavoidable [63,84]. The ultimate goal is to allow the
engineer to specify an error tolerance and let adaptive

algorithms and error estimators find the corresponding

discretization parameters and solution strategies. This

will be an important goal because we cannot expect that

sufficient numerical and physical competence will be

present among all users when CFD becomes a cheap,

widely accessible, and apparently simple-to-use tool.

We have already mentioned the particular need for
robust Navier–Stokes solvers when such solvers are

embedded in complex fluid models, involving multi-

species fluids, turbulence, heat transfer, chemical reac-

tions, and coupling to structural deformations. Many of

the future scientific water resources applications of in-

compressible viscous flow will involve such composite

models. For example, a better understanding of con-

solidation of porous media may be based on studying
coupled models of Navier–Stokes equations and the

equations of elasto-visco-plasticity at the pore level.

Geologists are especially interested in cracking mecha-

nisms, where the desire is to simulate deformation,

contact, and fracture of sand grains embedded in a

viscous fluid. The science of reactive porous media flow

has many open questions, and fundamental studies may

benefit from simulating pore level multi-phase flow
coupled with chemistry models, in particular in the vi-

cinity of rock ‘‘walls’’. Fortunately, the computing

technology necessary for realizing such studies is the

same that is needed for complex flow problems found in,

e.g., the car industry and physiology.

9. Concluding remarks

We have in this paper presented a basic introduction

to some well-known and widely used numerical methods

for the incompressible Navier–Stokes equations. The

emphasis has been on the fundamental underlying ideas
for discretizing the system of partial differential equa-

tions. By hiding the details of the spatial discretization

(finite elements, finite differences, finite volumes, spectral

methods), we hope to better explain the close relation-

ship between different numerical schools, in particular

finite differences/volumes and finite elements; most of

the schools apply the same fundamental reasoning and

arrive in most cases at the same algebraic equations
(modulo effects from different treatment of boundary

conditions). Naturally, our main emphasis is on ad-

vancing the equations in time and especially how to split

the equations into more tractable systems. The methods

covered herein include artificial compressibility, penalty

function formulations, fully implicit schemes, and op-

erator splitting techniques (and their aliases projection

methods, fractional step methods, pressure correction
strategies).

As an extension of the introduction to operator

splitting methods we have proposed a framework, in-

spired by Rannacher [63] and Turek [84], where many

classical and popular methods can be viewed as certain

preconditioned iterative methods applied to a robust,

fully implicit formulation of the Navier–Stokes equa-

tions. This opens up the possibility of a more general
view of the classical methods and for constructing an

endless series of new solution strategies, all of them

trying to solve the fully implicit system iteratively. One

such strategy pursued by the authors has been outlined.

Due to page limitations, several important topics had

to be left out or only briefly commented upon. Such

topics include, among others, detailed information

about finite element, finite difference, and finite volume
discretization techniques, spectral methods, higher-

order temporal schemes, ‘‘upwind’’ techniques for high

Reynolds number flow, discretizing boundary condi-

tions, least-squares finite element formulations, vorticity-

streamfunction formulations, grid generation techniques,

as well as adaptivity methods based on error estimation

and control. Relevant textbooks for references and

further reading about these subjects are [15,20,27,30,61,
84,86,89].

The lack of a discussion of special methods for high

Reynolds number flow, where a careful treatment of the

convective term v � rv is important, may give the im-
pression that these flow regimes are beyond scope of the

presented solution methods. This is not true; the same
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basic solution strategies can still be applied, but then in

combination special spatial discretization techniques for

the convective term (typically upwind differencing or

Petrov–Galerkin finite element methods). More sophis-

ticated approaches for highly convective flow apply
special space-time integrations, and this may affect the

operator splitting strategies. Within a fractional step

approach (as in Section 5.5), the convection term is

isolated in a Burgers equation, such that the treatment

of high Reynolds number flow is then limited to an

advanced numerical treatment of a Burgers equation.

No numerical experiments have been presented in this

paper. Results of extensive numerical investigations with
different solution strategies for the Navier–Stokes

equations can be found in textbooks, see [27,84] in

particular. The virtual album of fluid motion [42,84]

contains an exciting collection of animations for nu-

merous flow configurations.

Finally, we mention that incompressible viscous flow

can also be computed by means of lattice gas or lattice

Boltzman methods [12]. These methods are statistical in
nature and involve collisions of a large number of par-

ticles moving in a lattice. The approach is particularly

attractive for simulation of complex multi-phase flows

where the qualitative flow behavior is in focus. When

computational accuracy is important, and only one fluid

is flowing in the laminar regime, discretization of the

Navier–Stokes equations as outlined in the present pa-

per seems to be the most efficient and robust solution
strategy.
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