4

Cartesian Tensors

7.1 Coordinate transformations

At the very beginning of this book vectors and scalars were defined as ‘phys-
ical quantities’. But what does this mean mathematically? In this chapter a
precise mathematical statement is developed, using the idea that the physical
quantity exists independently of any coordinate system that may be used. This
new mathematical definition of vectors and scalars is generalised to define a
wider class of objects known as tensors. Throughout this chapter attention is
restricted to Cartesian coordinate systems.

Consider a rotation of a two-dimensional Cartesian coordinate system z;,
T3 through an angle 6 (Figure 7.1) to give a new coordinate system z, z}.
Then by carrying out some simple geometrical constructions it can be seen
that the coordinates of a point P in the z;, z, system are related to those in
the =}, =}, system by the equations

i = z1cos8+ Tysinb, (7.1)

zh = z3c0s8 — x;sinb, (7.2)

) _ cosf sinf T
zy /  \ —sinf cosf z )

or in matrix form,
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!
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Fig. 7.1. Rotation of Cartesian coordinates through an angle 6.

The 2 x 2 matrix relating (z},z3) to (z;,z2) will be referred to as L:

I- ( cosf siné ) (73)

—sind cosé
The matrix multiplication can be written in suffix notation, since
7 = Luzi + Lz = Lyjzy,
zy = Loz + Lyyzy = Lyjzj,
where the repeated suffix j implies summation, so
z; = L;jz;. (7.4)

The rotation matrix L;; has one particularly important property. The inverse
of the matrix is a rotation through -4,

-1 ( cos(—0) sin(—6) ) _ ( cosf —sinf ),

—sin(—6) cos(-0) sinf  cosf

which is the transpose of the matrix L. Thus LLT = I, or in suffix notation,
Li,-L]Tk = ;. Since LJTk = Ly;j, this can be written

LijLyj = bik. (7.5)

A matrix with this property, that its inverse is equal to its transpose, is said
to be orthogonal. Using this property, the inverse of the transformation can be
written down, simply by transposing the suffices:

Tr; = Lj,'.'l,'g-. (7.6)
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Another important property of the matrix L is that its determinant is
|L| = cos®6 +sin®f = 1.

So far we have only considered a two-dimensional rotation of coordinates.
Consider now a general three-dimensional rotation. For a position vector =
T1€1 + T2 + T3€3, the i component in the dashed frame is defined by

T, =e;-T=e€; e +€; ey +e; - e3r3 =e€;-€e;T;.
This is of the form (7.4), where
— pf .
L;; = €] - ej, (7.7)

so L;j is the cosine of the angle between e and e;. By the same argument, the
matrix which transforms from the dashed frame to the undashed frame has 7,5
element e; - e’ = Lji, so again we see that the inverse of L is its transpose.

f]
Since LLT = I, the determinant of L obeys |L|?> = 1, so |L| = £1. Orthogonal

matrices with |L| = 1 represent rotations, while those with |L| = —1 are
reflections.
From (7.4) and (7.6), two further important properties of L follow:
ozl 6:1:,-
— =L d — = Lj;. 7.8
ao; 9 T g T (7.8)

7.2 Vectors and scalars

Now consider a vector v. Its components transform from one coordinate system
to another in the same way as the coordinates of a point, so

’U:: = L,‘j'Uj. (79)

This equation gives the mathematical definition of a vector: v is a vector if
its components transform according to the rule (7.9) under a rotation of the
coordinate axes.

Similarly, a scalar s is defined by the property that its value is unchanged
by a rotation of coordinates, so

s'=s. (7.10)
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Using these new definitions of scalars and vectors, in terms of their trans-
formation properties under a rotation of coordinate axes, a number of rigorous
results can be proved, as illustrated in the following examples. Suffix notation
and the summation convention are used throughout.

Example 7.1

Suppose that a and b are vectors. Show that their dot product a - b is a scalar.
Since a and b are vectors, their components transform under rotation ac-
cording to
ai = L,‘ja]', b: = L,‘jbj.
Now to show a - b is a scalar, we must show that its value in the dashed frame
is the same as its value in the undashed frame.

(a . b)’ = a:b: = L.-jajL,-kbk = L,-]-L,-kajbk (7.11)
6jkajbk = akbk =a- b, (7.12)

so a - b is a scalar.

Example 7.2

Suppose that f is a scalar field. Show that V f is a vector.
If f is a scalar then f = f'. To show that Vf is a vector we need to
determine how it transforms under a rotation of coordinates.
of  of of Ox;
VA S S J
(V1) oz, Oz Or; 0z
using the chain rule. Now making use of (7.8),

o ;.9

7 ] ’
or; Oz

so V f obeys the transformation rule for a vector.

Example 7.3

A quantity is defined in a two-dimensional Cartesian coordinate system by
u = (azs,br;)T. Show that this quantity can only be a vector if a = —b.

If w is a vector, it must transform according to the rule u] = L;;u; where
L;; is the 2 x 2 rotation matrix (7.3). This gives

u' = azs cos@ + bry sinf
~ \ —azysinf + bzycosf /)’
but from the definition of u we also have
o = azy \ _ [ —ax;sinf + azx; cosd
bry | bz, cosf + bzysing /-
By comparing these two expressions we can see that they only agree if a = —b,
so this is the condition for u to be a vector.
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7.3 Tensors

The definition of a vector as a quantity which transforms in a certain way
under a rotation of coordinates can be extended to define a more general class
of objects called tensors, which may have more than one free suffix. A quantity
is a tensor if each of the free suffices transforms according to the rule (7.4).
For example, consider a quantity T;; that has two free suffices. This quantity
is a tensor if its components in the dashed frame are related to those in the
undashed frame by the equation

T} = LixLjm T (7.13)

The rank or order of the tensor is the number of free suffices, so the quantity T;;
obeying (7.13) is said to be a second-rank tensor. A tensor may have any number
of free suffices. For example, a third-rank tensor P;;; transforms according to
the rule

P/t = LipLjqLir Ppqr. (7.14)

The rule for a tensor of rank one is the same as the rule for a vector, so a vector
can be regarded as tensor of rank one. Similarly, a scalar can be thought of as
a tensor of rank zero.

We have already met one second-rank tensor, d;;, and a third-rank tensor,
€:jk- Tensors can also be constructed from vectors, for example Ou;/dz; is a
tensor. The demonstration that these quantities are indeed tensors is given in
the following examples.

Example 7.4

Show that d;; is a tensor.

Consider the quantity LixLjm0km. From the substitution property of d;;,
this is Lz Lk, which from the property (7.5) of L is 6;;. Now 6;1- = §;;, since
di; is defined the same way in any coordinate system. Thus J;; obeys the tensor
transformation law, Jgj = Lt LjmOm.

Example 7.5

Show that ¢;;; is a tensor.

Since €;;; has three suffices, the appropriate transformation to consider is
LipLjqLirepgr- Using (4.10), this is €;;x|L| = €k, since |L| = 1 for a rotation.
As for d;j, €5k is defined in the same way in all coordinate systems so €;;; =
€ijk = LipLjqLir€pgr. Therefore €51 is a third-rank tensor.
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Example 7.6

If u is a vector, show that Ju;/0z; is a second-rank tensor.
Since w is a vector, u = Lipuy.

ou! Ouy, Ouy Oz Ouyg
—+ =Lix—— =Lix——%5 = L Ly,
g Lk oz Lix oz, Oz kil 5z,

which is the transformation rule for a second-rank tensor.

7.3.1 The quotient rule

Tensors often appear as quantities relating two vectors, for example
a; = Tijbj. (7.15)

The quotient rule states that if (7.15) holds in all coordinate systems and for
any vector b the resulting quantity a is a vector, then Tj; is a tensor.

Proof

The quotient rule is proved as follows: Since a is a vector,
a; = Likak = Likajbj.

Since b is a vector, it obeys b; = L,,;b;, (note that this is the inverse trans-
formation, from the dashed to the undashed frame, so the suffices of L are
transposed). Substituting for b; gives

a; = L,‘kaijjb:n.
But since (7.15) holds in all coordinate systems,

t__
ai_Tim

bl,.
Subtracting these two results,
(Tilm - Likaijj)b:n =0.

If this result holds for any vector b, then the quantity in brackets must be zero,

SO
Ti’m = L,’kLijkj.

Therefore, T;; is a second-rank tensor. 0O
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A more general form of the quotient rule also holds: if an mth rank tensor
a is linearly related to an nth rank tensor b through a quantity T with m +n
suffices, then T is a tensor of rank m + n.

EXERCISES

7.1

7.2
7.3

74

7.5

7.6
7.7

7.8
7.9

7.10

Show that the definition L;; = €. - e; is consistent with the matrix
given in (7.3).

If u is a vector field, show that V - u is a scalar field.

Given that a and b are vectors, show that the quantity a;b; is a
second-rank tensor.

Show that in a two-dimensional Cartesian coordinate system (z1, z2)

the quantity
1T —ilf'f
Ti; = 2
T3 —IT1T
is a tensor.

If ¢ is a scalar field, show that the quantity
0%¢

Tjk = —0—
ik azjazk

is a second-rank tensor.

If T;; is a tensor, show that Tj; is a scalar.

Write the divergence theorem in the form of suffix notation and
hence obtain the analogue of the divergence theorem for a second-

rank tensor Tj;:
BT,-j #-
——dV = () Tijn;dS. 7.16
JIIL 5eav = f Tom, (7.16)

Write down the transformation rule for a tensor of rank four.

If Qijx: is a tensor of rank four, show that Qijjt is a tensor of rank
two.

A quantity u; has the property that for any vector a, u;a; is a scalar.
Show that the u; are the components of a vector. (This is a form of
the quotient rule.)
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7.3.2 Symmetric and anti-symmetric tensors

A second-rank tensor T;; is said to be symmetricif T;; = T}; and anti-symmetric
if Ty; = —Tji. A tensor of rank greater than two can be symmetric or anti-
symmetric with respect to any pair of indices. For example §;; is a symmetric
tensor, while €;;; is anti-symmetric with respect to any two of its indices.

It is important to verify that symmetry is a physical property of tensors,
i.e. that if a tensor is symmetric in a Cartesian coordinate system it is also
symmetric in other Cartesian coordinate systems. This can be confirmed as
follows: suppose that A;; is a symmetric tensor, so A;; = Aj;. Then in a
rotated frame,

Al = LikLjmAgm = LimLik Amk = Aj;,

so Aj; is also symmetric.

Example 7.7

Show that any second-rank tensor T;; can be written as the sum of a symmetric
tensor and an anti-symmetric tensor.

For any tensor T;;, the tensor S;; = T;; + Tj; is symmetric. Similarly,
A;j = Ti; — Tj; is anti-symmetric. Since Si; + Aij = 2T;;, Ti; can be written
as Tij = 1;]'/2 + Atj/2

Example 7.8

The second-rank tensor T;; obeys €;;xTjx = 0. Show that Tj; is a symmetric
tensor.

By expanding out the implied double sum, for i = 1 we have €;93T53; +
€132T32 = 0, which gives T33 = T35. Similarly the other required results follow
from taking ¢ =2 and 71 = 3.

The same result may be obtained more elegantly by multiplying the given
equation €4 Tjx = 0 by €pn;:

0 = emni€ieTir
(6mj6nk - (5mk6nj)Tj
= Tmn - Tnma

80 Tnn = Tom.
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7.3.3 Isotropic tensors

The two tensors d;; and ¢;;; have a special property. Their components are
the same in all coordinate systems. A tensor with this property is said to be
isotropic. Isotropic tensors are of great importance physically, and it turns out
that there are very few examples of isotropic tensors. This is illustrated by the
following results.

Theorem 7.1

There are no non-trivial isotropic first-rank tensors.

Proof

Suppose that there exists an isotropic first-rank tensor (i.e. an isotropic vector),
u = (u1,ug, u3). Now consider a rotation through /2 about the z3-axis, which
is given by the matrix

010
L={| -1 0 0 ]. (7.17)
0 01
If w is a first-rank tensor then u; = L;ju; = (u2, —uy,us3). Now if u is isotropic,
u; = uj, S0 u; = ug and uy = —u;. Therefore u; = uz = 0. By considering a
rotation about the z;-axis in a similar way, it can be shown also that us = 0,
so the only solution is u = (0,0,0). o
Theorem 7.2

The most general isotropic second-rank tensor is a multiple of §;;.

Proof

Suppose that a;; is an isotropic second-rank tensor. Consider the rotation
through 7 /2 about the z3-axis given by (7.17). a;; must obey a;; = LimLjnamn,
which in terms of matrix multiplication is @' = LaL”. Carrying out these ma-
trix multiplications gives the result

az2 —a2; a23
T
Lal” = | —a;2 ann -ai3 |. (7.18)
a3z —as asz3

This must be equal to a;; if the tensor aj; is isotropic. The terms on the
diagonal give a1; = a2. The other terms give a;3 = a3 and ass = —ay3, from
which a;3 = az3 = 0. By considering the analogous rotations about the other
coordinate axes it follows that a;; = ags = a3s and that all the off-diagonal
terms are zero, so a;; = Ad;j, where ) is an arbitrary constant. O
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Theorem 7.3

The most general isotropic third-rank tensor is a multiple of €;;.

Proof

If a;;x is an isotropic third-rank tensor, then
Aijk = agjk = LipquLkrapqr- (719)

Consider the same rotation (7.17), for which the only non-zero elements of L

are Liy = 1, Ly; = —1 and L33 = 1. Therefore for any choice of 7, j and k
in (7.19), only one term on the r.h.s. is non-zero. Choosing (i,7,k) = (1,1,1)
gives aj1; = agzz and the choice (i,j,k) = (2,2,2) gives a2 = —ai11, S0

a111 = az22 = 0. A different choice of rotation matrix would yield az33 = 0.

By making further choices of (7,j,k) the following equations can be ob-
'pained: aji2 = —a221, G221 = G112, G122 = 4211, G211 = —a122, G121 = —a212,
as12 = ajz1. From these and the analogous equations involving the suffices 2
and 3 it follows that all 18 elements with two suffices equal are zero.

Finally, by considering the cases when i, j and k are all different, (7.19)

gives ajaz = —a213, G231 = —0a132, 312 = —agz. The analogous equations for
rotations about the other axes can be used to show that aj23 = az31 = az12 =
—agz1 = —0@132 = —0a213, 50 that a;jz = Ae;ijx for some constant A. O
Theorem 7.4

The most general isotropic fourth-rank tensor is
@ijkt = A0ijOrs + pdindji + vudjk, (7.20)
where A, u and v are constants.

Proof

An isotropic fourth-rank tensor must obey
Qijkl = LipquLerlsapqrs- (721)

Using the rotation (7.17), only one of the 81 terms in the implied sum on the
r.h.s. is non-zero. Since L1, =1, Ly; = —1 and L33 = 1, a suffix 1 on the Lh.s.
becomes a suffix 2 on the r.h.s., a suffix 2 on the L.h.s. becomes a suffix 1 on the
r.h.s. and changes the sign, while a suffix 3 remains unchanged. By applying

these rules, a1113 = a2223 = —a1113, S0 a1113 = @223 = 0. Similarly, any other
term with three suffices equal and the fourth one different must be zero. Also
Q2113 = —Q1223 = —a2113 SO @2113 = a1223 = 0 and all similar terms with only

one pair of equal suffices are zero.
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The only remaining terms are those with two pairs of equal suffices and
those with all four suffices equal. Applying the rotation (7.17) to terms in
which the first two suffices are equal and the last two suffices are equal gives
aj122 = Q2211, @1133 = Q2233 and Q3322 = as3ii- Using the rotations about the
other coordinate axes it follows that these six terms are all equal. Similarly,
Q1212 = Q2121 = G1313 = G2323 = (3131 = G3232 and a;221 = G2112 = Q1331 =
a2332 = 3113 = a3223. The terms with all four suffices equal must obey a;1;1 =
a2222 = a3333. Thus there can be at most four independent components of the
tensor, @122, 61212, G1221 and ajiq;g.

To proceed it is necessary to consider a different rotation, for example the
rotation through an arbitrary angle 8 about the z3-axis given by

cos§ sinf 0
L=\ —sinf cosf 0 |]. (7.22)
0 01

Using this rotation, a111; is related to all the terms with suffices equal to 1 or
2. Applying (7.21) gives

ajin = cos*@ayyy +sint 0 az
;2 2
+5sin® 6 cos® B(a1122 + az211 + G1212 + G2121 + Q1221 + @2112).

Simplifying this equation and using the relations above, the trigonometric fac-
tors cancel out leaving

aiinn = a1i122 + ai1212 + a2z, (7.23)

so in fact there are only three independent components, which can be labelled
ai22 = A, 81212 = W, a1221 = v. The tensor a;jz; can therefore be written in
terms of A, p and v in the form (7.20). Note that this ensures that (7.23) is
satisfied.

O
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7.4 Physical examples of tensors

Tensors appear in many contexts, including fluid mechanics, solid mechanics
and general relativity. Some of these applications will be described in Chapter
8. The following two sections briefly consider two other examples of tensors.

7.4.1 Ohm’s law

Ohm’s law states that there is a linear relationship between the electric current
j flowing through a material and the electric field E applied to the material.
This can be written

Jj=0E, (7.24)

where the constant of proportionality o is known as the conductivity (an inverse
measure of electrical resistance). Note that (7.24) forces the vectors j and E to
be parallel. For some materials, this may be true, but consider a substance with
a layered structure made of different materials (Figure 7.2). For this material,

Fig. 7.2. For a material made up of layers, the electric field E and the electric current
J may not be parallel.

current may flow more easily along the layers than across them. For example,
if the substance is made of alternate layers of a conductor and an insulator,
then current can only flow along the layers, regardless of the direction of the
electric field.

It is useful therefore to have an alternative to (7.24) in which j and F do
not have to be parallel. This can be achieved by introducing the conductivity
tensor, o;, which relates 7 and E through the equation
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Ji = o Ep. (7.25)

Since j and E are vectors, it follows from the quotient rule that o is a tensor.

The values of o depend on the properties of the material. For example,
suppose that there are alternating layers of a conductor with conductivity g
and an insulator. If axes are chosen such that the x3 direction is perpendicular
to the layers, then in this coordinate system

g9 0 0
Oik = 0 oo 0
0 0 0

Now suppose that the material has no such layered structure, so that there
is no preferred direction and is made of a uniform material with conductivity
0. Such a material is said to be isotropic, meaning ‘the same in all directions’.
In this case g;; = g dix, SO

Ji = 0 Ex = 09 0 By, = 00 E;

and so the simple rule
j = 0p E

holds. This is why d;x is said to be an isotropic tensor: it represents the relation-
ship between two vectors that are always parallel, regardless of their direction.

7.4.2 The inertia tensor

Consider a body rotating with angular velocity §2. Then, as shown in Section
1.3.1, the velocity vector at the position vector r is

v=82xr.

‘The angular momentum of a particle of mass m is h = mr xv. The total angular
momentum of a rotating body can then be determined as a volume integral, by
considering dividing the body into small volume elements dV each with mass
pdV, where p is the density of the body. The total angular momentum H is

therefore given by
H;, = /// p(rxv), dV
v

///Vp(r X (£2x7)), dV
///Vp(rzﬁi —(r-2)r;) dV
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//L pP (7‘2(5,']*0]' - 7‘]'.0]'1‘1;) av
= /// p (r?6ij — rir;) £2;dV.
\4

Since {2; is a constant it can be taken out of the integral, leaving the equation

H; = I,;12;, (7.26)

where I;; is called the inertia tensor of the body and is defined by

I; = ///vp (r26,~j - r,-rj) dV. (7.27)

Note that as in the previous example, the tensor appears as a quantity relating
two vectors, and the quotient rule confirms that I;; is a tensor. The inertia
tensor is an example of a symmetric tensor, since it is clear that I;; = I;.

Example 7.9

Find the inertia tensor for a cube with sides of length 2a and constant density
p, for rotations about its centre.
To find I;; we need to compute two volume integrals. First,

/// pridV = / / / p(z? +y* +2%) dzdydz
14 —aJ—aJ-a
3p/ / / r? dz dydz

3p(2a)(2a)/ r’dz

—-a

= 8pa® = Md?,

where M = 8pa?® is the mass of the cube. The second volume integral is

J[[ orirs av

For i # j this is zero, since for example the integral of zy is zero since this is
an odd function of z and y. For ¢ = j, for example i = j = 1, we have

///sz2 dV = Ma?*/3

from the working of the first integral. Putting the two parts together,
. . 2 ;
I,;j = Mazé,'j - Mazéij/3 = -3-M(1251'j.

Note that the inertia tensor is isotropic. This means that for a cube rotating
about its centre, the rotation vector and angular momentum vector are always
parallel.
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Summary of Chapter 7

e Under a rotation of coordinate axes from a frame with unit vectors e; to a
frame with unit vectors e, the coordinates of a point are related by

z; = Lijx;

where L;; = € - e;.
o The inverse of the transformation is

!
I; = Lji.’L‘j,

so L™! = LT. Such a matrix is said to be orthogonal. In suffix notation, this

result is written
L,'ijj = 6ik-

e A scalar s has the same value in each frame, s’ = s.

e A vector v transforms according to the rule v} = L;;v;.

o If a quantity T;; transforms according to the rule Ti’j = LitLjmTrm then T}
is a tensor of second rank. The rank of a tensor is the number of free suffices.
Thus vectors are tensors of rank one and scalars are tensors of rank zero.

o The quotient rule says that if a; = T;;b; and a is a vector for any choice of
the vector b, then T; is a tensor.

¢ A tensor T;; is symmetric if T;; = Tj; and anti-symmetric if Tj; = —Tj;.

e §;; and €;;; are tensors of a special type known as isotropic tensors. This
means that their components do not change when the coordinate axes are
rotated. A second-rank isotropic tensor must be a multiple of 4;; and a third-
rank isotropic tensor must be a multiple of €;;.

¢ In physical systems, tensors frequently arise as quantities relating two vec-
tors. This allows two vectors to be linearly related to each other without being
parallel. Examples include the conductivity tensor and the inertia tensor.
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EXERCISES

7.11

7.12

7.13

7.14

7.15

7.16

7.17

B, is an anti-symmetric tensor, so B,; = —B;,.. Show that the
anti-symmetry persists in a rotated frame, i.e. B., = —B. .

If B,s is an anti-symmetric tensor, show that B,, = 0.

The third-rank tensor A;j; is symmetric with respect to its first
two suffices but anti-symmetric with respect to the second and third
suffices. Show that all elements of A;;; must be zero.

A quantity A;; is related to a vector B by A;; = €;;x Bx.

(a) Show that A;; is a tensor and describe its symmetry property.
(b) Find an equation for B in terms of A;;.

Find an isotropic fourth-rank tensor that can be written in terms of
€ijk-

Write down an isotropic fifth-rank tensor. Show that the most gen-
eral isotropic fifth-rank tensor must have at least ten independent
components.

Show that the kinetic energy FE of a body rotating with angular
velocity §2 is related to its inertia tensor Iy by E = I;p{2;12/2.
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Applications of Vector Calculus

This chapter provides a brief introduction to some of the many applications
of vector calculus to physics. Each of these is a vast topic in itself and is the
subject of numerous books and a great deal of current research, so it is not
possible to go into any detail in this book. However, a number of important
governing equations and results can be obtained using the methods described in
the previous chapters. In particular, it will be seen that the equations describing
the behaviour of physical quantities such as electric fields and the velocity of a
fluid are written in terms of the gradient, divergence and curl operators.

The following sections discuss the flow of heat within a body, the behaviour
of electric and magnetic fields, the mechanics of solids and the mechanics of
fluids. There are however several other subjects which use the language of vector
calculus, including the theories of quantum mechanics and general relativity.
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8.1 Heat transfer

In this section the equation describing the flow of heat within a solid body
is derived. The argument is based on the law of conservation of energy, so is
similar to the argument for the conservation of mass for a fluid given in Section
5.1.1.

Consider a solid with a temperature T' which depends on space and time
and a thermal conductivity K. Then the heat flows from hot to cold at a
rate proportional to the temperature gradient, so the heat flux q is given by
q = —KVT. The minus sign appears here because the vector VT points in
the direction of increasing temperature but the heat flows in the direction of
decreasing temperature.

Now consider an arbitrary region within the solid, denoted by a volume V
with surface S and outward normal n. The thermal energy or heat content of
a volume element dV is T ¢ pdV where p is the density of the material and c is
its specific heat. So the total heat content H of the volume V is

#= [[[ Tepav.

The rate of change of this heat content must equal the rate at which heat flows
into the volume V, assuming that there are no sources of heat within V. This
rate of inflow of heat is the integral of the heat flux —q - n over the surface
S, where the minus sign appears since for heat to flow in, ¢ must point in the
opposite direction to n. Equating the rate of change of heat content with the
rate at which heat flows into V gives

/// cpdV = # -q-ndS= #KVT nds.

The surface integral on the r.h.s. can be converted to a volume integral using
the divergence theorem, giving

// —cpdV = ///V (KVT)dV. (8.1)

Finally, since the volume V' is arbitrary, the volume integrals can be cancelled,
giving
or
cPa = V - (KVT), (8.2)

since if (8.2) were not true at any point in space, then introducing a small
volume V' around this point would contradict (8.1).



