
Solution Exam 2015

Vector functions are denoted by boldface. We write ∂ui

∂xj
as ui,j and hence

εij = 1/2(ui,j + uj,i).

Oppgave 1

a) There was an error in the formula sheet for Hooks law. Hence, we must
accept derivations based on that error as well.

(∇ · σ)i =

3∑
j=1

∇jσij (1)

= λ

3∑
j=1

∇j
3∑
k=1

εkkδij + 2µ

3∑
j=1

∇jεij (2)

= λ

3∑
k=1

∇i∇kuk + µ

3∑
j=1

(∇j∇iuj +∇j∇jui) (3)

= (λ+ µ)∇i (∇ · u) + µ∇2ui (4)

This can be written in vector form as

∇ · σ = µ∇2u + (µ+ λ)∇(∇ · u)

and hence, as ∇ · σ + f = 0, we obtain Navier’s equation

µ∇2u + (µ+ λ)∇(∇ · u) + f = 0

b) Normal and tangent vectors:

n =

 0
0
1

 , t1 =

 1
0
0

 , and t2 =

 0
1
0


Then

σ · n =

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 0
0
1

 =

 σ13
σ23
σ33


Normal stress:

nTσn = σ33

Shear:
tT1 σn = σ13

tT2 σn = σ23
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Here

σ13 = 2µε13 = µ(u1,3 + u3,1)

σ23 = 2µε23 = µ(u2,3 + u3,2)

σ33 = 2µε33 + λ
∑
k

εkk = 2µu3,3 + λ
∑
k

uk,k

c) We have

u = c

(
−y
x

)
+

(
a
b

)
then

ε(u) =

[
0 c− c

c− c 0

]
As ε(u) =

[
0 0
0 0

]
we obtain that σ =

[
0 0
0 0

]
.

Oppgave 2

a) Because of θ−, z−, and t− independence we have

v(r, θ, z, t) =

 u(r, θ, z, t)
v(r, θ, z, t)
w(r, θ, z, t)

 =

 u(r)
v(r)
w(r)


Then the remaining terms of the continuity equation are:

1

r

∂(ru(r))

∂r
= 0

Hence, ru(r) is constant and u(r) = A/r. Then A = 0 because u(b) = 0.
The remaining terms of the θ-equation are

1

r

∂

∂r
(r
∂v(r)

∂r
)− v/r2 = 0

The solution of this equation is on the form:

v = A/r +Br

As v(a) = 0 and v(b) = 0, A = B = 0 and v(r) = 0.

b) We use the z equation to obtain a solution. The remaining parts of the
z− equation reads:

1

r

∂

∂r
(r
∂w(r)

∂r
) = 0

We obtain:

r
∂w(r)

∂r
= A
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Hence,
w(r) = Aln(r) +B

At the boundaries, the no-slip condition holds. Therefore, we have that

w(b) = Aln(a) +B = U

and
w(a) = Aln(b) +B = 0

Solving for A and B, we find:

w(r) = U
ln(b/r)

ln(b/a)

c) Similar as before, the z -equation reads in this case:

η
1

r

∂

∂r
(r
∂w(r)

∂r
) = β

∂

∂r
(r
∂w(r)

∂r
) =

β

η
r

r
∂w(r)

∂r
=

1

2

β

η
r2 +A

The general solution is thus:

w(r) =
1

4

β

η
r2 +Aln(r) +B.

The no-slip condition implies:

w(a) = U w(b) = 0

which allows to solve for A and B, resulting into:

w(r) = −1

4

β

η

(
b2 − r2

)
+

(
U +

1

4

β

η

(
b2 − a2

)) ln(b/r)

ln(b/a)

d) The stress in a Newtonian fluid is given by:

σ = −pI + 2µS, (5)

where S is the rate of strain and p the pressure in the fluid. For p, we
have

p = βz + p0, (6)

where p0 is some constant. From the formula sheet we find for S in
cylindrical coordinates for the pressent flow field:

Srr = Sθθ = Szz = Srθ = Szθ = 0 (7)
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Srz =
1

2
∇rw(r). (8)

At the inner cylinder, we have n = er and therefore:

T = −per + µ∇rw(a)ez. (9)

The normal stress is −p and the shear stress µ∇rw(a). At the outer
cylinder, we have n = −er and therefore:

T = per − µ∇rw(b)ez. (10)

As the normal is n = −er, the normal component is strictly speaking −p.
We observe that the shear stress −µ∇rw(b) is in oposite direction in order
to satisfy the force balance. We have

∇rw(r) =
1

2

β

η
r +

1

r

(
U +

1

4

β

η

(
b2 − a2

)) 1

ln(b/a)
(11)

Oppgave 3

a) From the inverse Hook law we obtain:

εxx = − ν
E
σ0 (12)

εyy = − ν
E
σ0 (13)

εzz =
1

E
σ0 (14)

εxy = 0 (15)

εyz = 0 (16)

εzx = 0 (17)

The solution to these equations, given that there is no translation or ro-
tation is given by

u = − ν
E
σ0x (18)

v = − ν
E
σ0y (19)

w =
1

E
σ0z. (20)

The length after loading becomes:

L′ = L+ w(z = L) = L

(
1− Mg

EπR2

)
(21)

and the radius:

R′ = R

(
1 +

νMg

EπR2

)
(22)
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As σmax is the maximum stress, the material can support before yield, the
mass M should satisfy:

M ≤ πσmaxR
2

g
, (23)

For the present values we find:

M = 392 kg (24)

b) The Euler-Bernoulli equation for the present choice of coordinates is

−EI d
2u

dz2
= My(z), (25)

which leads, given the definition of the moment, to:

EI
d2u

dz2
+Mgu = 0 (26)

As the beam is simply supported, we have

u(0) = u(L) = 0, (27)

which gives a condition for ω:

ωn =
nπ

L
, n = 1, 2, . . . (28)

Taking u(z) = sin(ωnz), we obtain

−EIω2
n +Mg = 0, (29)

and therefore

M =
EI

gL2
n2π2 n = 1, 2, . . . , (30)

which is smallest for n = 1:

Mmin = π2 EI

gL2
(31)

The area moment of inertia can by computed by means of:

I =

R∫
0

2π∫
0

r3 cos2 φdrdφ =
1

4
πR4. (32)

This allows us to find a condition for R:

R =

(
4MmingL

2

π3E

) 1
4

(33)

Applying the numeric values, we find:

R = 7 mm. (34)
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