Solution Exam 2015

Vector functions are denoted by boldface. We write $\frac{\partial u_{i}}{\partial x_{j}}$ as $u_{i, j}$ and hence $\epsilon_{i j}=1 / 2\left(u_{i, j}+u_{j, i}\right)$.

Oppgave 1

a) There was an error in the formula sheet for Hooks law. Hence, we must accept derivations based on that error as well.

$$
\begin{align*}
(\nabla \cdot \sigma)_{i} & =\sum_{j=1}^{3} \nabla_{j} \sigma_{i j} \tag{1}\\
& =\lambda \sum_{j=1}^{3} \nabla_{j} \sum_{k=1}^{3} \epsilon_{k k} \delta_{i j}+2 \mu \sum_{j=1}^{3} \nabla_{j} \epsilon_{i j} \tag{2}\\
& =\lambda \sum_{k=1}^{3} \nabla_{i} \nabla_{k} u_{k}+\mu \sum_{j=1}^{3}\left(\nabla_{j} \nabla_{i} u_{j}+\nabla_{j} \nabla_{j} u_{i}\right) \tag{3}\\
& =(\lambda+\mu) \nabla_{i}(\nabla \cdot \mathbf{u})+\mu \nabla^{2} u_{i} \tag{4}
\end{align*}
$$

This can be written in vector form as

$$
\nabla \cdot \sigma=\mu \nabla^{2} \mathbf{u}+(\mu+\lambda) \nabla(\nabla \cdot \mathbf{u})
$$

and hence, as $\nabla \cdot \sigma+\mathbf{f}=0$, we obtain Navier's equation

$$
\mu \nabla^{2} \mathbf{u}+(\mu+\lambda) \nabla(\nabla \cdot \mathbf{u})+\mathbf{f}=0
$$

b) Normal and tangent vectors:

$$
\mathbf{n}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \mathbf{t}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \text { and } \mathbf{t}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Then

$$
\sigma \cdot \mathbf{n}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\sigma_{13} \\
\sigma_{23} \\
\sigma_{33}
\end{array}\right]
$$

Normal stress:

$$
\mathbf{n}^{T} \sigma \mathbf{n}=\sigma_{33}
$$

Shear:

$$
\begin{aligned}
\mathbf{t}_{1}^{T} \sigma \mathbf{n} & =\sigma_{13} \\
\mathbf{t}_{2}^{T} \sigma \mathbf{n} & =\sigma_{23}
\end{aligned}
$$

Here

$$
\begin{aligned}
\sigma_{13} & =2 \mu \epsilon_{13}=\mu\left(u_{1,3}+u_{3,1}\right) \\
\sigma_{23} & =2 \mu \epsilon_{23}=\mu\left(u_{2,3}+u_{3,2}\right) \\
\sigma_{33} & =2 \mu \epsilon_{33}+\lambda \sum_{k} \epsilon_{k k}=2 \mu u_{3,3}+\lambda \sum_{k} u_{k, k}
\end{aligned}
$$

c) We have

$$
\mathbf{u}=c\binom{-y}{x}+\binom{a}{b}
$$

then

$$
\epsilon(\mathbf{u})=\left[\begin{array}{cc}
0 & c-c \\
c-c & 0
\end{array}\right]
$$

As $\epsilon(\mathbf{u})=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ we obtain that $\sigma=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Oppgave 2

a) Because of $\theta-, z-$, and t - independence we have

$$
\mathbf{v}(r, \theta, z, t)=\left[\begin{array}{c}
u(r, \theta, z, t) \\
v(r, \theta, z, t) \\
w(r, \theta, z, t)
\end{array}\right]=\left[\begin{array}{c}
u(r) \\
v(r) \\
w(r)
\end{array}\right]
$$

Then the remaining terms of the continuity equation are:

$$
\frac{1}{r} \frac{\partial(r u(r))}{\partial r}=0
$$

Hence, $r u(r)$ is constant and $u(r)=A / r$. Then $A=0$ because $u(b)=0$. The remaining terms of the θ-equation are

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v(r)}{\partial r}\right)-v / r^{2}=0
$$

The solution of this equation is on the form:

$$
v=A / r+B r
$$

As $v(a)=0$ and $v(b)=0, A=B=0$ and $v(r)=0$.
b) We use the z equation to obtain a solution. The remaining parts of the $z-$ equation reads:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial w(r)}{\partial r}\right)=0
$$

We obtain:

$$
r \frac{\partial w(r)}{\partial r}=A
$$

Hence,

$$
w(r)=A \ln (r)+B
$$

At the boundaries, the no-slip condition holds. Therefore, we have that

$$
w(b)=A \ln (a)+B=U
$$

and

$$
w(a)=A \ln (b)+B=0
$$

Solving for A and B, we find:

$$
w(r)=U \frac{\ln (b / r)}{\ln (b / a)}
$$

c) Similar as before, the z-equation reads in this case:

$$
\begin{gathered}
\eta \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial w(r)}{\partial r}\right)=\beta \\
\frac{\partial}{\partial r}\left(r \frac{\partial w(r)}{\partial r}\right)=\frac{\beta}{\eta} r \\
r \frac{\partial w(r)}{\partial r}=\frac{1}{2} \frac{\beta}{\eta} r^{2}+A
\end{gathered}
$$

The general solution is thus:

$$
w(r)=\frac{1}{4} \frac{\beta}{\eta} r^{2}+A \ln (r)+B
$$

The no-slip condition implies:

$$
w(a)=U \quad w(b)=0
$$

which allows to solve for A and B, resulting into:

$$
w(r)=-\frac{1}{4} \frac{\beta}{\eta}\left(b^{2}-r^{2}\right)+\left(U+\frac{1}{4} \frac{\beta}{\eta}\left(b^{2}-a^{2}\right)\right) \frac{\ln (b / r)}{\ln (b / a)}
$$

d) The stress in a Newtonian fluid is given by:

$$
\begin{equation*}
\sigma=-p I+2 \mu S \tag{5}
\end{equation*}
$$

where S is the rate of strain and p the pressure in the fluid. For p, we have

$$
\begin{equation*}
p=\beta z+p_{0} \tag{6}
\end{equation*}
$$

where p_{0} is some constant. From the formula sheet we find for S in cylindrical coordinates for the pressent flow field:

$$
\begin{equation*}
S_{r r}=S_{\theta \theta}=S_{z z}=S_{r \theta}=S_{z \theta}=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
S_{r z}=\frac{1}{2} \nabla_{r} w(r) \tag{8}
\end{equation*}
$$

At the inner cylinder, we have $\mathbf{n}=\mathbf{e}_{r}$ and therefore:

$$
\begin{equation*}
\mathbf{T}=-p \mathbf{e}_{r}+\mu \nabla_{r} w(a) \mathbf{e}_{z} \tag{9}
\end{equation*}
$$

The normal stress is $-p$ and the shear stress $\mu \nabla_{r} w(a)$. At the outer cylinder, we have $\mathbf{n}=-\mathbf{e}_{r}$ and therefore:

$$
\begin{equation*}
\mathbf{T}=p \mathbf{e}_{r}-\mu \nabla_{r} w(b) \mathbf{e}_{z} \tag{10}
\end{equation*}
$$

As the normal is $\mathbf{n}=-\mathbf{e}_{r}$, the normal component is strictly speaking $-p$. We observe that the shear stress $-\mu \nabla_{r} w(b)$ is in oposite direction in order to satisfy the force balance. We have

$$
\begin{equation*}
\nabla_{r} w(r)=\frac{1}{2} \frac{\beta}{\eta} r+\frac{1}{r}\left(U+\frac{1}{4} \frac{\beta}{\eta}\left(b^{2}-a^{2}\right)\right) \frac{1}{\ln (b / a)} \tag{11}
\end{equation*}
$$

Oppgave 3

a) From the inverse Hook law we obtain:

$$
\begin{align*}
\epsilon_{x x} & =-\frac{\nu}{E} \sigma_{0} \tag{12}\\
\epsilon_{y y} & =-\frac{\nu}{E} \sigma_{0} \tag{13}\\
\epsilon_{z z} & =\frac{1}{E} \sigma_{0} \tag{14}\\
\epsilon_{x y} & =0 \tag{15}\\
\epsilon_{y z} & =0 \tag{16}\\
\epsilon_{z x} & =0 \tag{17}
\end{align*}
$$

The solution to these equations, given that there is no translation or rotation is given by

$$
\begin{align*}
u & =-\frac{\nu}{E} \sigma_{0} x \tag{18}\\
v & =-\frac{\nu}{E} \sigma_{0} y \tag{19}\\
w & =\frac{1}{E} \sigma_{0} z \tag{20}
\end{align*}
$$

The length after loading becomes:

$$
\begin{equation*}
L^{\prime}=L+w(z=L)=L\left(1-\frac{M g}{E \pi R^{2}}\right) \tag{21}
\end{equation*}
$$

and the radius:

$$
\begin{equation*}
R^{\prime}=R\left(1+\frac{\nu M g}{E \pi R^{2}}\right) \tag{22}
\end{equation*}
$$

As $\sigma_{\text {max }}$ is the maximum stress, the material can support before yield, the mass M should satisfy:

$$
\begin{equation*}
M \leq \frac{\pi \sigma_{\max } R^{2}}{g} \tag{23}
\end{equation*}
$$

For the present values we find:

$$
\begin{equation*}
M=392 \mathrm{~kg} \tag{24}
\end{equation*}
$$

b) The Euler-Bernoulli equation for the present choice of coordinates is

$$
\begin{equation*}
-E I \frac{d^{2} u}{d z^{2}}=M_{y}(z) \tag{25}
\end{equation*}
$$

which leads, given the definition of the moment, to:

$$
\begin{equation*}
E I \frac{d^{2} u}{d z^{2}}+M g u=0 \tag{26}
\end{equation*}
$$

As the beam is simply supported, we have

$$
\begin{equation*}
u(0)=u(L)=0 \tag{27}
\end{equation*}
$$

which gives a condition for ω :

$$
\begin{equation*}
\omega_{n}=\frac{n \pi}{L}, \quad n=1,2, \ldots \tag{28}
\end{equation*}
$$

Taking $u(z)=\sin \left(\omega_{n} z\right)$, we obtain

$$
\begin{equation*}
-E I \omega_{n}^{2}+M g=0 \tag{29}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
M=\frac{E I}{g L^{2}} n^{2} \pi^{2} \quad n=1,2, \ldots \tag{30}
\end{equation*}
$$

which is smallest for $n=1$:

$$
\begin{equation*}
M_{\min }=\pi^{2} \frac{E I}{g L^{2}} \tag{31}
\end{equation*}
$$

The area moment of inertia can by computed by means of:

$$
\begin{equation*}
I=\int_{0}^{R} \int_{0}^{2 \pi} r^{3} \cos ^{2} \phi d r d \phi=\frac{1}{4} \pi R^{4} \tag{32}
\end{equation*}
$$

This allows us to find a condition for R :

$$
\begin{equation*}
R=\left(\frac{4 M_{\min } g L^{2}}{\pi^{3} E}\right)^{\frac{1}{4}} \tag{33}
\end{equation*}
$$

Applying the numeric values, we find:

$$
\begin{equation*}
R=7 \mathrm{~mm} \tag{34}
\end{equation*}
$$

